E
39~5~4

AREE A A0l FEEE ABIR BMEEE AL
BEME Y BRI

Hierarchical Feedback Control of Large-Scale Discrete-Time
Systems with Coupled States and Inputs
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Abstract- Singh’s multi-level method is extended to the optimal tracking control of a large
interconnected dynamical system which has coupled states and coupled inputs. The steady-
state tracking error and a convergence condition for the extended multi-level method are
derived analytically and the results show that the steady-state tracking error and a conver-
gence rate have to be compromised. Also, a new maulti-level method which is advantageous
over the Singh’s method in steady-state tracking error and computational burden is pro-
posed by introducing nominal inputs into the performance index. The resulting feedback
gain matrix and the compensation vector are optimal for all initial conditions so that even-
tual on-line computation is minimal.

1. Introduction
*IEE ORI Tk ETIER algux - T
“*F& B Btk Tk ET7TT8H - W LRE

T ET 19804 9A21H A standard centralized optimization technique[1
1 RASIE  19904¢ 3H23H ~2] can be used, at least in principle, to control a

large interconnected dynamical system, but the
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high dimensionality of the problem accompanies
computational difficulties which are associated
with computation time and storage space. To get
around these computational difficulties, much
work [3~6] has been done on the method of
decomposition and coordination. In this method,
the large dynamic optimization problem is
decomposed into a number of smaller subproblems
which can be solved independently and the coordi-
nation variables are successively modified to force
the optimal soulutions of the independent subprob-
lems to the optimal soution of the overall system.

The main disadvantage that arises in the use of
such decomposition and coordination method for
the practical control of large interconnected
dynamical system is that the control is open-loop
in nature so that it is necessary to recalculate it
whenever an unknown disturbance changes the
initial state of the system. This is undesirable since
it ties down a relatively large computer for the
calculation and implementation of the control.

Singh at al. [7~8] have proposed a promising
hierarchical closed-loop method for the optimal
control of large inerconnected dynamical system
with coupled states using the interaction predic-
tion method (IPM) [9]. This method is found to be
superior to other multi-level methods for a certain
class of optimization problems. On the upper-level
it has more rapid convergence rate and fewer
operations than other coordination rules such as
gradient technique[107.

Since some of large interconnected dynamical
systems, such as road traffic system[11~12], com-
munication network system[13], have coupled
inputs we extend Singh’s method to apply more
general large interconncted system with coupled
states and coupled inputs. Also we derive analyti-
cally the steady-state tracking error and a conver-
gence condition for the extended method. The
results reveal that unless a particular condition is
satisfied the steady-state tracking error always
exists and has to be compromised with the conver-
gence condition. Further we propose an efficient
hierarchical technique which is advantageous over
the Singh’s method in steadys-state tracking error
and computational burden. The proposed hierar-
chical technique is based on the transformation of

ARG S A0| REEE AN MRESA AlAHS| BN WREIE

a tracking problem into a regulator problem.

The rest of the paper is divided into three parts.
In section 2 the hierarchical optimal solution to the
constant target tracking problem of a large inter-
connected dynamical system is obtained. Aso, its
steady-state tracking error and the convergence
condition are derived analytically. In section 3 we
propose an efficient multi-level technique. In the
final section the multi-level methods are applied to
a river pollution control example.

2. Soulution to the System with Coupled
States and Coupled Inputs

Let us consider the following liner quadratic

[LQ] tracking proble of a large interconnected
dynamical discrete-time system which is coupled
with a number of subsystems.

Xk+D=AX(H+BUK+C,X(0)=X, (1)
J=1/2 SX (0 - XVQIX (B~ x7]
+ UK RU (k)} (2)

where A is an » X » system matrix, B is an # X m
input matrix, C is an X1 known constant input
vector, X% is an » X1 constant desired value of
state vector, @=0 is an nX g diagonal state
weighting matrix and R>( is an m % m diagonal
input weighting matrix. It is assumed that (4,8B)
and (D,A)are stabilizable and detectable pairs,
respectively, where Q=D'D.

To overcome computational difficulties
associated with the large discrete algebraic Ric-
cati equation and tracking equation the large-scale
centralized optimal tracking problem is
decomposed into smaller subproblems i-th of
which is expressed as follows ;

(k) = Auxi{k) + Biw: (k) +ci+ hi(k),2:(0) =
Xio (3>
Rk =3 L 20+ My U(B) @

5= 2 e )~ 5£1Qu ) — 5]
+uti(k)Rz'Ui(/f)} (5)

where x,(%) and w.(k) are an », X1 state vector
and an m;x1 control vector of i-th subsystem,
respectively, khi(k) is an x,x ] interaction input
vector which comes in from the other sybsystems,
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N is the number of interconnected subsystems
7
whcih comprise the overall system, Z,"i: n

and

Ms

m=m,

)

=1

The upper-level problem of the hierarchical
muiti-level technique is essentially updating the
coordination vector to force the independent
lower-level solutions to the optimal solution of the
overall system. For this purpose consider Lagran-
gian of the decomposed subsystem (3), (4)and
(5) 5

L=3 5 {1/ 2Lk — 281 Qulxs(0) —x¢]
1/ 2 ul(h) Rewd k) + ANR) i k)
= S0 [Las % o0+ My wa(B)]
+piE+ D=2k + D+ Ai(k)
+ BB+ et hiB]h= 2 L, (6)

ksl

where A, and p. are an x; X1 Lagrange multiplier
and costate vector of i-th subsystem, respectively.
(6) shows that [ is additively separable for
given k. (k) and A, (k) trajectories. This implies
that for any given h,(k) and A;(k) trajectories,
there are N independent subproblems the i-th
subprolem of which is represented by L,

A necessary condition for updating the z,(%)
and A (k) to force the independent subproblm
solutions to the optimal soution of the overall
problem is given by

oL oo
T 0 and Z g =0 ™

From this equation two equations are obtained
and these equations are used as the upper-level
coordination rule from iteration L to L+1 as
follows ;

[Ai(/{)]lﬂz[ :pi(k+1) ]z ®
hi(k) E[ij x(/f)+Mij uj(/c)]

The important point to note is that at the upper-
level, it is necessarty to do very little calculations
and that the convergence rate is rapid compared to
the gradient method.

Now, consider the lower-level problem. The
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Hamiltonian for the i-th independent subproblem
can be written as

H:=1/2[x8) —x8" Q:ilx:(k)—x8(k)]
+1/ 228k Riu (k) + Alzi(k)

~ AR La 2D+ M (D)

oA+ D [Ax k) + B k) +ci+ hi(k)]
(9)

Then the following set of necessary conditions can
be obtained.

xi(k+1)=Aix;(k) +Biuilk) +c:
hi(k), x:0) =xi0 (10)
uilk)=Qux: (k) +A'Blp,(k+1)—
R 3 MEAR) (11)
i) =Qux: (k) + Alp:(k+1)
~ 2L~ Quf, plk)=0  (12)

From these equations and the coordination rule
optimal trajectories of states and control inputs
kr—1) can be
obtained by the following open-loop algorithm
1;

step 1:At lthe upper-level set =1, predict
initial values for A.(£)=h%k) and A:(k)=A%k),
i=1, 2,---,N and k=0, 1---,k,—1 and pass them
down to the lower-level,

step 2 : At the lower-level solve the independent
necessary conditions for optimality (10), (11)
and (12) for x:(k), u,(k) and p,(k), 1, 2, N
and k=0, 1,--,k,—1, respectively and send
them to the upper-level.

for a finite interval ((=0, -,

step 3 : At the upper-level, check for the conver-
gence of (8). ie., whether their errors are within
the pre-determined error bound, ¢. If not update
A:(k) and z.(k) using (8), i=1, 2,--, N and k=
0, 1,--, ks, and set L=1+1 and go to step 2,

The following Theorem gives the closed-loop
control.

Theorem 1: The optimal tracking control law of
the large scale system with coupled states and
coupled inputs, (1) for infinite-time case (4,—0)is
given by

Uky=GX(k)+d (13}
where (G and ¢ are a constant feedback gain
matrix and a compensation vector, respectively.
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proof : As a simple intuitive proof of Theorem 1
we suppose that at the opimum,
Adk)=—pk+1)

(k) =22 (L %00+ My us(B)]

n
J¥1

(14-a)
{14-b)

Substituting (14-a) and (14-b) into the necessary
conditions for optimality (10), (11) and (12) we
olbtain the following integrated expressions.

X(k+1)=AX(k)+BUK+C+AX (k) +
BU (%)

=AX(k)+BU K +C (15)
Ulk)=-R'[B+BIP(k+1)
=—RBP(k+1) (16)

Pk = QX (k) — X+ A+ AP (k+1)
=QIX (k) — X4+ AP+, Plks) =0
an

where 4 and B are the block diagonal part of the
global system and input matrices 4 and B, respec-
tively and A and B are the off-block diagonal part
of the matrices A and B, respectively.

Since (15), (16) and (17) are the same as the
necessary conditions for optimality of standard
centralized optimal tracking problem, the optimal
control law is given by (13) if %, approaches
infinity. This completes the proof.

Consequently, the procedure to obtatin G and 4
in (13} can be summarized as follows ;

step 1:Run the open-loop algorithm 1 with X
(0y=0 and let 4= U(0).

step 2:Run the open-loop algorithm » times

sucessively for the following initial conditions and
obtain U(0), =1, 2,-, n,

[ 1 } [0 W
0 1
. 0
XI(O): . b XZ(O): . b .'.?
| 0 ] L O]
[0
X"(O):.
0
1

step 3:Let G=[U0)—d |U¥0)—dl——

SEAE Y A0| #ESE ARM MBS Al ASiol REiey MRS

[U™(0)—d]

Note that #+1 runs of the open-loop algorithm
1 are needed to obtain the feedback gain matrix G
and the compensation vector 4. However, all this
off-line computation is performed independently
at subsystem level so that its computation time
and storage requiremenmts can be reduced. From
now on we call the above procedure to otain G and
d the extended method.

Therem 2 : The extended method has the steady-
state tracking error given by

Egs — {In‘A+BR‘]Bt[In“At]_‘ Q}/l
{(I»—Alx*—-C} (18)
proof : If k,is large enough for he system to each

a steady-state, we obtain the followings form
(15), (16) and (17).

Xs=AXs+BUs;+C {19)
Us:‘_R'lBtPs (20)
Pi=QIXs— X+ A'Ps (21)

where X, U, Ps are the steady-state state, con-
trol and costate vector, respectively, From (19),
(20) and (21) we obtain

(/n-AlXs=—-BR'B[I.—A']"'Q[X:

- X+C (22)
Define the steady-state tracking error as
ess:Xd_Xs (23)

Substituting (23) into (22) we obtain (18). This

completes the proof.
Theorem 3:The convergence condition of the
algorithm 1 is given by

§+[éfT*Qf§—1/2BfT*QTB]>o (24)

where 7 is block diagonal part of 7" and 7** is the
adjoint operator of 7 which is defined by the
following linear operator(14];

VR =[TxlR) =y (B = "8 0, j+Dx(h)
(25)

where @ is the state transition matrix of (1),
Remark 1:
(a) Cohen[15] has derived the convergence con-
dition of IPM for the continuous-time system. It
can be easily shown that the condition is identical
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to that of the discrete-time system. Therefore, the
proof of Theorem 3 is omitted.

(b) From Theorem 2, we can see that the
steady-state tracking error always exists and
depends on @ and R unmless [/, — A]X*~C=0.

(¢) From Theorem 3, the convergence condi-
tion (24) will be always satisfied provided that R
is large enough. This is because in second term on
the left-hand side of (24), R is not present.

(d) From Theorem 2, an increase of |Q] or a
decrease of |R| reduces the steady-state tracking
error. But these may violate the convergence
condition of Theorem 3. Hence the steady-state
tracking error and the convergence condition have
to be compromised.

In the following, we propose an efficient multi
-level technique which is based on the extended
method to reduce the steady-state tracking error

3. Proposed Method

Let us take the performance index to reduce the
steady-state tracking error as follows:

ky—
JP=1/2 S X B~ X1 QIX (k) ~ X ]+
(U —UFRIU K — U} (26)
where UU” is an m X1 pre-determined nominal
control vector, which will be discussed later.
Define new state and control vectors as
Z =Xk —-X*
Viel=UWK-U"
Using (27-a) and (27-b) we can tranform the

large-scale optimal tracking problem of (1) and
(26) into the following regulator problem with

(27-a)
(27-b)

constant input.

ZU+ D =AZ(K) +BV (D) +C?,  Z(0)=
X(0)—~X*“ (28)
JP=1/2 82 QZ() + VIQZ (k) +
VHE RV (k) (29)

where C°=[A—-1,]X*+BU"+C.

Decompose the above large scale optimal regu-
lator problem into a number of independent sub-
problems i-th of which is expressed as follows.

Zk+1)=A:Z:(k)+ B (k) +ct+g:(k),
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z:(0) — xf (30)
2= 2L 20+ M, 0] (31)
JE=1/2"8 20 Q)+ 1 U0 Rivs k)

(32)

where z,(k) and p;(k) are an »,x1 new state
vector and an m, X1 new control vector of i-th
subsystem, respectively and gi(k) is an nix1i inter-
action input vector which comes in from the other
sybsystems.

Since the procedure to obtain the hierarchical
open-loop control is similiar to the extended
method in the previous section, we describe the
results only.

(1) At the upper-level :

[ yi(k):l L l: —q.(k+1) 41

2:(k) SLu 20+ My 0k

kE3
where 7,(f) and q;(£) are an »,x1 Lagrange
multiplier and costate vector of i-th subsystem,
respectively.
(ii) At the lower-level:

z2ilk+1)=A:z.0k)+B.v:(k) +ct+g:(k),

2:(0) =x,(0) —x¢ (34)
vi(k)=—Ri'BHA+ D gi(k+1) — R
2 MEh) (35)
q:(k) = Qiz:(k) + Alq:{k+1)
- 2L, ailk) =0 (36)

Theorem 4:The Optimal control law of the
transformed large scale regulator problem for
infinmite-time duration is given by

V{k=GZ(k) (37)

Proof : Similar to the proof of Theorem 1,

As in the previous section, the procedure to
obtain G in (37) can be summarized as follows;

step 1:Solve the open-loop algorithm » times
successively for the following initial conditions
and obtain Vi(0Q), i=1, 2,--,n.

1

zo=| |, zzo=|"| -
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0

ZM0) =
0

| 1]

step 2: Let G=[V* )| VH0)]-- ] V"(0)]
Theorem 5: A necessary and sufficient coindi-

tion for the optimal tracking with zero steady-
state tracking error is

BU"=[l,—AlX*~C (42)

and the steady-state optimal tracking control law
of (1 and (27) is given by

Uk =GX(k)+d? (43)
where ¢?= — GX*+U”"

Proof : With BU"=[I,,— A]X*— C the tracking
problem of (1) and (27) can be transformed into
the regulator problem of (28) and (29) with C*=
0 and from Theorem 4, the feedback gain matrix
G which is obtained hierarchically is identical
with the standard centralized one. Therefore [A+
BG] is an asymptotically stabe matrix [16] if (A,
B) and (D, A) are stablizable and detectable
pairs, respectively, Hence X (k) and U (k)
approach X<¢ and U?", respectively from (27-a)
and (27-b) as £ goes to infinity. Accordingly, from
(37) we obtain (43). This completes the proof.

Remark 2:

(a) The optimal tracking control law (43) is
now obtained by the regulator algorithm. Thus it
is not necessary to run the open-loop algorithm to
obtain the compensation vector d. Morever, the
open-loop algorithm saves (s, x#n;) X (n;X1)
matrix multiplication N XL times because (36)
does not contain @.x, which is contained in (12).

(b) If a vector [In-A]X“—C belongs to the
column space of B, the nominal control input /"
which is obtained by

Ur=[B'B]'B{[I.—AlX‘~C (44)

is the unique solution to (42). In this case, the
proposed multi-level method has a zero steady-
state tracking error regardless of ¢ and R.

(¢) If a vector [[,— A]X“— C does not belong
to the column space of B, the nominal control

HRME 2 A0| BEAE AR RN Al S| R BERGIE

input /" which is obtained by (44) is the approx-
imate solution to (42).

4. Simulation and Discussions

To illustrate the presented results we consider
he river pollution model of river Cam near Cam-
bridge[17] ;

x(k+1)=Axi(K)+Biu(k)+c:+hilk), i=
1, 2.

0.18 0
h , = = s BIZ
where, A=A [ ~0.25 0,27]
2 0 ’
0.55 0 4.5
L“_[ 0 0.55}’ Cl'[ 6.15

|-e] Ll

xl(O):[O O]t, xz(0)=[0 l]t

Computer simulations are carried out for the
following two cases.

Case 1, [I,—AlX¢—C belongs to the col-
umn space of B;x?=[4,16 7 5.56 7]

Case [. [[,—A]X?—C does not belong to
the column space of B; X¢=[5 7 5 7]¢

In simulations, k, is chosen to 30 which is suffi-
ciently long enough for the system to reach a
steady-state and ¢ is chosen to be 1075,

A summary of the simulation results of both
Singh’s method and proposed method is given in
Table 1.

The simulation results show that the steady-
state tracking error of the proposed method is
smaller than that of Singh’s method in both cases
and these results are consistent with Thorem 2 and
Theorem 5. Especially the steady-state tracking
error of the proposed method in case I is zeor
irrespective of ¢ and R and these weighting
matrices affect only the transient response.

5. Conclusion

Sigh’s multi-level method is extended to the
optimal tracking control of a large interconnected
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Table 1 Summary of the simulation results

Trans, KIEE, Vol. 39, No. 5. MAY. 1990

Weighting Martix Number of Steady-State Tracking Error
Method
Q R Iterations Case | Case |l
|| 101 - diverge _ —
Singh’s I, 501 . 16 [—1.13.39 —.36 —.41]1 [—.34 .40 —.89 .43]*
Method I, 1001 » 12 [—1.22 .42 — .45 —.47]Y [—.40 .42 —.99 .47])*
I 500112 9 [~1.30 .45 —.54 —.52]9 [—.47 .45 —1.09 .52]*
| 100, diverge _— ——
Proposed I, 501 - 16 0. [0. .29 0. .02]*
Method . 1001 . 12 0. (0. .29 0. .02]*
I 5001 . 9 0. [0. .29 0. 02]°

dynamical system which has coupled states and
coupled inputs. The steady-state tracking error
and a convergence condition of the extended
mothod is derived analytically and the results
show that the steady-state tracking error and
convergence condition have to be compromised.
Also we propose an efficient multi-level technique
for the tracking problem which is advantageous
over the Singh’s method in computational burden
and the steady-state traciking error. All the calcu-
lations in this method are performed within a
hierarchical structure and the resulting controller
provides a feedback control which is opitimal for
all initial conditions.
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