• 제목/요약/키워드: statistical submanifold

검색결과 4건 처리시간 0.017초

CHARACTERIZATIONS ON GEODESIC GCR-LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER STATISTICAL MANIFOLD

  • Rani, Vandana;Kaur, Jasleen
    • 호남수학학술지
    • /
    • 제44권3호
    • /
    • pp.432-446
    • /
    • 2022
  • This article introduces the structure of GCR-lightlike submanifolds of an indefinite Kaehler statistical manifold and derives their geometric properties. The characterizations on totally geodesic, mixed geodesic, D-geodesic and D'-geodesic GCR-lightlike submanifolds have also been obtained.

CR-PRODUCT OF A HOLOMORPHIC STATISTICAL MANIFOLD

  • Vandana Gupta;Jasleen Kaur
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.224-236
    • /
    • 2024
  • This study inspects the structure of CR-product of a holomorphic statistical manifold. Findings concerning geodesic submanifolds and totally geodesic foliations in the context of dual connections have been demonstrated. The integrability of distributions in CR-statistical submanifolds has been characterized. The statistical version of CR-product in the holomorphic statistical manifold has been researched. Additionally, some assertions for curvature tensor field of the holomorphic statistical manifold have been substantiated.

CHEN INVARIANTS AND STATISTICAL SUBMANIFOLDS

  • Furuhata, Hitoshi;Hasegawa, Izumi;Satoh, Naoto
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.851-864
    • /
    • 2022
  • We define a kind of sectional curvature and 𝛿-invariants for statistical manifolds. For statistical submanifolds the sum of the squared mean curvature and the squared dual mean curvature is bounded below by using the 𝛿-invariant. This inequality can be considered as a generalization of the so-called Chen inequality for Riemannian submanifolds.

CURVATURES OF SEMI-SYMMETRIC METRIC CONNECTIONS ON STATISTICAL MANIFOLDS

  • Balgeshir, Mohammad Bagher Kazemi;Salahvarzi, Shiva
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.149-164
    • /
    • 2021
  • By using a statistical connection, we define a semi-symmetric metric connection on statistical manifolds and study the geometry of these manifolds and their submanifolds. We show the symmetry properties of the curvature tensor with respect to the semi-symmetric metric connections. Also, we prove the induced connection on a submanifold with respect to a semi-symmetric metric connection is a semi-symmetric metric connection and the second fundamental form coincides with the second fundamental form of the Levi-Civita connection. Furthermore, we obtain the Gauss, Codazzi and Ricci equations with respect to the new connection. Finally, we construct non-trivial examples of statistical manifolds admitting a semi-symmetric metric connection.