$C R$-PRODUCT OF A HOLOMORPHIC STATISTICAL MANIFOLD

Vandana Gupta and Jasleen Kaur*

Abstract

This study inspects the structure of $C R$-product of a holomorphic statistical manifold. Findings concerning geodesic submanifolds and totally geodesic foliations in the context of dual connections have been demonstrated. The integrability of distributions in $C R$-statistical submanifolds has been characterized. The statistical version of $C R$-product in the holomorphic statistical manifold has been researched. Additionally, some assertions for curvature tensor field of the holomorphic statistical manifold have been substantiated.

1. Introduction

The analysis of geometric structures on sets of certain probability distributions led to the emergence of the statistical manifold. Introduced by [13] and investigated thoroughly by [1], [2], [10], [16], [17], these manifolds have applications in the field of statistical inference, neural networks, control system, face recognition and image analysis, etc.

The concept of $C R$-submanifolds of a Kaehler manifold was first initiated by [3] and further developed by [4], [6], [5], [18]. The researchers explored the geometry of $C R$-submanifolds in various manifolds such as a Hermitian manifold, a Sasakian manifold, and a Kenmotsu manifold etc. Their statistical version, namely, $C R$-statistical submanifolds in holomorphic statistical manifolds was investigated intensively by Furuhata et al. [8], [7], [9]. Contemporarily, [11], [12], [14] and [15] et al. obtained several results on $C R$-statistical submanifolds of the holomorphic statistical manifold.

In the present research work, various results for the geodesicity and totally geodesic foliations in $C R$-statistical submanifolds of the holomorphic statistical manifold have been developed. The integrability of totally real distributions has been worked upon. The conditions for a $C R$ - statistical submanifold to be a $C R$-product have been derived. Some expressions for the curvature tensor field

[^0]in the structure of a mixed foliate $C R$-statistical submanifold and $C R$-product of the holomorphic statistical manifold have been provided.

2. Preliminaries

This section addresses some key concepts pertaining to the theory of submanifolds of a holomorphic statistical manifold.

Definition 2.1. [8] Let \bar{M} be a C^{∞} manifold of dimension $\bar{m} \geq 2, \bar{\nabla}$ be an affine connection on \bar{M}, and \bar{g} be a Riemannian metric on \bar{M}. Then ($\bar{M}, \bar{\nabla}, \bar{g}$) is called a statistical manifold if
(i) $\bar{\nabla}$ is of torsion free, and
(ii) $\left(\bar{\nabla}_{X} \bar{g}\right)(Y, Z)=\left(\bar{\nabla}_{Y} \bar{g}\right)(X, Z)$ for $X, Y, Z \in \Gamma(T \bar{M})$.

Moreover, an affine connection $\bar{\nabla}^{*}$ is called the dual connection of $\bar{\nabla}$ with respect to \bar{g} if

$$
X \bar{g}(Y, Z)=\bar{g}\left(\bar{\nabla}_{X} Y, Z\right)+\bar{g}\left(Y, \bar{\nabla}_{X}^{*} Z\right) \text { for } X, Y, Z \in \Gamma(T \bar{M})
$$

If $(\bar{M}, \bar{\nabla}, \bar{g})$ is a statistical manifold, then so is $\left(\bar{M}, \bar{\nabla}^{*}, \bar{g}\right)$. We therefore denote the statistical manifold by ($\left.\bar{M}, \bar{g}, \bar{\nabla}, \bar{\nabla}^{*}\right)$.

Let M be a submanifold of a statistical manifold $(\bar{M}, \bar{\nabla}, \bar{g})$ and g be the induced metric on M. If the normal space of M is denoted by $T_{x}^{\perp} M:=\{v \in$ $\left.T_{x} \bar{M} \mid \bar{g}(v, w)=0, w \in T_{x} M\right\}$, then the Gauss and Weingarten formulae are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y), \quad \bar{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi \tag{1}\\
& \bar{\nabla}_{X}^{*} Y=\nabla_{X}^{*} Y+B^{*}(X, Y), \quad \bar{\nabla}_{X}^{*} \xi=-A_{\xi}^{*} X+\nabla_{X}^{\perp *} \xi \tag{2}
\end{align*}
$$

for $X, Y \in \Gamma(T M), \xi \in \Gamma\left(T^{\perp} M\right)$.
Further, the following holds for $X, Y \in \Gamma(T M), \xi \in \Gamma\left(T^{\perp} M\right)$:

$$
\begin{equation*}
\bar{g}(B(X, Y), \xi)=g\left(A_{\xi}^{*} X, Y\right), \quad \bar{g}\left(B^{*}(X, Y), \xi\right)=g\left(A_{\xi} X, Y\right) \tag{3}
\end{equation*}
$$

Let \bar{R} and R be the curvature tensor fields with respect to $\bar{\nabla}$ and ∇, respectively. Then the equations of Gauss and Codazzi are respectively given by

$$
\begin{align*}
\bar{g}(\bar{R}(X, Y) Z, W) & =\bar{g}(R(X, Y) Z, W)+\bar{g}\left(B(X, Z), B^{*}(Y, W)\right) \tag{4}\\
& -\bar{g}\left(B^{*}(X, W), B(Y, Z)\right)
\end{align*}
$$

$$
\begin{equation*}
\bar{g}(\bar{R}(X, Y) Z, J Z)=\bar{g}\left(\left(\bar{\nabla}_{X} B\right)(Y, Z)-\left(\bar{\nabla}_{Y} B\right)(X, Z), J Z\right) \tag{5}
\end{equation*}
$$

where $\left(\bar{\nabla}_{X} B\right)(Y, Z)=\nabla_{X}^{\perp} B(Y, Z)-B\left(\nabla_{X} Y, Z\right)-B\left(Y, \nabla_{X} Z\right)$ for X, Y, Z and W tangent to M.

Definition 2.2. [12] Let $(\bar{M}, \bar{J}, \bar{g})$ be a Kaehler manifold and $\bar{\nabla}$ an affine connection of \bar{M}. Then, $(\bar{M}, \bar{\nabla}, \bar{J}, \bar{g})$ is called a holomorphic statistical manifold if
(i) $(\bar{M}, \bar{\nabla}, \bar{g})$ is a statistical manifold, and
(ii) ω is a $\bar{\nabla}$-parallel 2-form on \bar{M}, where ω is defined by $\omega(X, Y)=\bar{g}(X, \bar{J} Y)$, for any $X, Y \in \Gamma(T M)$.

Lemma 2.3. [7] Let $(\bar{M}, \bar{J}, \overline{\bar{g}})$ be a Kaehler manifold. If we define a connection $\bar{\nabla}$ as $\bar{\nabla}=\bar{\nabla}^{\circ}+K$, where $\bar{\nabla}^{\circ}$ is a Levi-Civita connection on \bar{M} and K is a (1,2)-tensor field satisfying the following conditions:

$$
\begin{aligned}
K(X, Y) & =K(Y, X) \\
\bar{g}(K(X, Y), Z) & =\bar{g}(Y, K(X, Z)) \\
K(X, \bar{J} Y) & =-\bar{J} K(X, Y)
\end{aligned}
$$

for $X, Y, Z \in \Gamma(T \bar{M})$, then $(\bar{M}, \bar{\nabla}, \bar{J}, \bar{g})$ is a holomorphic statistical manifold.
Lemma 2.4. [12] Let $(\bar{M}, \bar{\nabla}, \bar{J}, \overline{\bar{g}})$ be a holomorphic statistical manifold. Then

$$
\begin{equation*}
\bar{\nabla}_{X} \bar{J} Y=\bar{J} \bar{\nabla}_{X}^{*} Y \tag{6}
\end{equation*}
$$

for $X, Y, Z \in \Gamma(T M)$, where $\bar{\nabla}^{*}$ is the dual connection of $\bar{\nabla}$ with respect to \bar{g}.
Example 2.5. [12] For $c \in \mathbb{R}$, let O be an interval in $\left\{t>0 \mid 1-2 c t^{3}>0\right\}$ and set a domain $\Omega=O \times \mathbb{R}$ in the $\left(u^{1}, u^{2}\right)$-plane \mathbb{R}^{2}. J denotes the standard complex structure on Ω, determined by $J \frac{\partial}{\partial u^{1}}=\frac{\partial}{\partial u^{2}}$. Define a Riemannian metric g and an affine connection $\bar{\nabla}$ on Ω by

$$
\begin{aligned}
g & =u^{1}\left\{\left(d u^{1}\right)^{2}+\left(d u^{2}\right)^{2}\right\} \\
\bar{\nabla} \frac{\partial}{\partial u^{1}} \frac{\partial}{\partial u^{1}} & =-\frac{1}{2} \phi\left(u^{1}\right)^{-1} \frac{\partial}{\partial u^{1}}, \\
\bar{\nabla} \frac{\partial}{\partial u^{1}} \frac{\partial}{\partial u^{2}} & =\bar{\nabla} \frac{\partial}{\partial u^{2}} \frac{\partial}{\partial u^{1}}=\left(u^{1}\right)^{-1}\left(1+\frac{1}{2} \phi\left(u^{1}\right)\right) \frac{\partial}{\partial u^{2}}, \\
\bar{\nabla} \frac{\partial}{\partial u^{2}} \frac{\partial}{\partial u^{2}} & =-\frac{1}{2} \phi\left(u^{1}\right)^{-1} \frac{\partial}{\partial u^{2}},
\end{aligned}
$$

where $\phi(t)=-1 \pm \sqrt{1-2 c t^{3}}$. Then $(\Omega, \bar{\nabla}, g, J)$ is a holomorphic statistical manifold of constant holomorphic sectional curvature c.
3. $C R$-statistical submanifolds of a holomorphic statistical manifold

Definition 3.1. $(\bar{M}, \bar{\nabla}, \bar{J}, \bar{g})$ be a holomorphic statistical manifold. Then a statistical submanifold M is called CR-statistical submanifold of holomorphic
statistical manifold if it is endowed with the pair of orthogonal distributions (D, D^{\perp}) satisfying the following conditions:

$$
T M=D \oplus D^{\perp}
$$

The distribution D is invariant if

$$
\bar{J}\left(D_{x}\right)=D_{x} \quad \text { for each } x \in M
$$

The distribution D^{\perp} is anti-invariant if

$$
\bar{J}\left(D_{x}^{\perp}\right) \subset T_{x}^{\perp} M \quad \text { for each } x \in M
$$

The projection morphisms of $T M$ to D and D^{\perp} are denoted by T and R, respectively. Then we have

$$
\begin{align*}
& X=T X+R X \tag{7}\\
& \bar{J} \xi=t \xi+f \xi \tag{8}
\end{align*}
$$

for $X \in \Gamma(T M)$ and $\xi \in \Gamma\left(T^{\perp} M\right)$, where $t \xi$ and $f \xi$ denote the tangential and the normal components of $\bar{J} \xi$, respectively.

Applying \bar{J} to equation (7), we obtain

$$
\bar{J} X=\bar{J} T X+\bar{J} L X
$$

If we put $\bar{J} T X=P X$ and $\bar{J} L X=F X$, then

$$
\begin{equation*}
\bar{J} X=P X+F X \tag{9}
\end{equation*}
$$

where $P X \in \Gamma(D)$ and $F X \in \Gamma\left(D^{\perp}\right)$. We denote the orthogonal complementary distribution to $\bar{J}\left(D^{\perp}\right)$ in $\Gamma\left(T M^{\perp}\right)$ by N. Then we have

$$
T M^{\perp}=\bar{J}\left(D^{\perp}\right) \oplus N
$$

Definition 3.2. A $C R$-statistical submanifold of a holomorphic statistical manifold is called D-totally geodesic with respect to $\bar{\nabla}$ (resp. $\bar{\nabla}^{*}$) if $B(X, Y)$ $=0\left(\right.$ resp. $\left.B^{*}(X, Y)=0\right)$ for all $X, Y \in D$.

Definition 3.3. A $C R$-statistical submanifold of a holomorphic statistical manifold is called mixed totally geodesic with respect to $\bar{\nabla}$ (resp. $\bar{\nabla}^{*}$) if $B(X, Y)=0$ (resp. $\left.B^{*}(X, Y)=0\right)$ for $X \in D$ and $Y \in D^{\perp}$.

Theorem 3.4. Let M be a $C R$-statistical submanifold of the holomorphic statistical manifold \bar{M}. Then, M is D-totally geodesic with respect to $\bar{\nabla}$ (resp. $\bar{\nabla}^{*}$) if and only if $A_{\xi}^{*} X$ (resp. $A_{\xi} X$) has no component in D.

Proof : M is D-totally geodesic with respect to $\bar{\nabla}$ if and only if

$$
\bar{g}(B(X, \bar{J} Y), \xi)=0
$$

for all $X, Y \in D$ and $\xi \in \Gamma\left(T M^{\perp}\right)$.

Since M is a $C R$-statistical submanifold, therefore

$$
\bar{g}(B(X, \bar{J} Y), \xi)=\bar{g}\left(\bar{\nabla}_{X} \bar{J} Y, \xi\right)=-\bar{g}\left(\bar{J} Y, \bar{\nabla}_{X}^{*} \xi\right)
$$

follows using (1). Further, from equation (2),

$$
\bar{g}(B(X, \bar{J} Y), \xi)=\bar{g}\left(A_{\xi}^{*} X, \bar{J} Y\right)
$$

Hence the hypothesis leads to the required assertion. Similarly, the corresponding result holds for the dual connection.

Theorem 3.5. Let M be a $C R$-statistical submanifold of the holomorphic statistical manifold \bar{M}.Then,

1. the distribution D defines a totally geodesic foliation with respect to $\bar{\nabla}$ (resp. $\bar{\nabla}^{*}$) if and only if $A_{\bar{J} Z} X$ (resp. $A_{\bar{J} Z}^{*} X$) has no component in D.
2. the distribution D^{\perp} defines a totally geodesic foliation with respect to $\bar{\nabla}$ (resp. $\left.\bar{\nabla}^{*}\right)$ if and only if $B(X, Z)$ (resp. $\left.B^{*}(X, Z)\right)$ has no component in D^{\perp}.
Proof: The distribution D defines a totally geodesic foliation if and only if $\bar{g}\left(\nabla_{X} Y, Z\right)=0$ for all $X, Y \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$.

Using (1), we have

$$
\begin{aligned}
\bar{g}\left(\nabla_{X} \bar{J} Y, Z\right) & =\bar{g}\left(\bar{\nabla}_{X} \bar{J} Y, Z\right)=\bar{g}\left(\bar{J} \nabla_{X}^{*} Y, Z\right) \\
& =\bar{g}\left(Y, \bar{\nabla}_{X} \bar{J} Z\right)=\bar{g}\left(Y, A_{\bar{J} Z} X\right) .
\end{aligned}
$$

From the hypothesis with respect to dual connection $\bar{\nabla}^{*}$, we get ((1). The distribution D^{\perp} defines a totally geodesic foliation if and only if $\bar{g}\left(\nabla_{X} Y, Z\right)=0$ for all $X, Y \in \Gamma\left(D^{\perp}\right)$ and $Z \in \Gamma(D)$.

Now from (1),

$$
\begin{aligned}
\bar{g}\left(\nabla_{X} Y, \bar{J} Z\right) & =\bar{g}\left(\bar{\nabla}_{X} Y, \bar{J} Z\right) \\
& =-\bar{g}\left(Y, \bar{\nabla}_{X}^{*} \bar{J} Z\right)=\bar{g}(\bar{J} Y, B(X, Z)),
\end{aligned}
$$

which completes the proof.
Theorem 3.6. Let M be a $C R$-statistical submanifold of the holomorphic statistical manifold \bar{M}. If M is a totally geodesic submanifold with respect to $\bar{\nabla}$ and $\bar{\nabla}^{*}$, then $T M^{\perp}$ is a Killing distribution on M.

Proof : From equation (1) and using the relationship of dual connections in holomorphic statistical manifold, we get

$$
\begin{aligned}
\bar{g}(B(X, Y), \xi) & =\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)=-\bar{g}\left(Y, \bar{\nabla}_{X}^{*} \xi\right) \\
& =-\bar{g}(Y,[X, \xi])-\bar{g}\left(Y, \bar{\nabla}_{\xi}^{*} X\right) \\
& =-\bar{g}(Y,[X, \xi])-\xi \bar{g}(Y, X)+\bar{g}\left(\bar{\nabla}_{\xi} Y, X\right) \\
& =-\bar{g}(Y,[X, \xi])-\xi \bar{g}(Y, X)+\bar{g}\left(\bar{\nabla}_{Y} \xi, X\right)+\bar{g}([\xi, Y], X) \\
& =-\left(L_{\xi} \bar{g}\right)(X, Y)-\bar{g}\left(\bar{\nabla}_{Y}^{*} X, \xi\right) \\
\bar{g}(B(X, Y), \xi) & =-\left(L_{\xi} \bar{g}\right)(X, Y)-\bar{g}\left(B^{*}(X, Y), \xi\right)
\end{aligned}
$$

The totally geodesicity of M with respect to dual connections in above equation proves the result.

Theorem 3.7. Let M be a $C R$-statistical submanifold of the holomorphic statistical manifold \bar{M}. Then
(i) $\bar{g}\left(J A_{J Z} U, X\right)=\bar{g}\left(\nabla_{U}^{*} Z, X\right)$,
(ii) $A_{J W} Z=A_{J Z} W$,
(iii) $A_{\xi}^{*} J X=-A_{J \xi} X$,
for any U tangent to $N, X \in \Gamma(D), Z, W \in \Gamma\left(D^{\perp}\right)$ and ξ in N.
Proof : From Lemma 2.4, for U tangent to $N, Z \in \Gamma\left(D^{\perp}\right)$,

$$
-A_{J Z} U+D_{U} J Z=J \nabla_{U}^{*} Z+J B^{*}(U, Z)
$$

Taking inner product with X,

$$
\bar{g}\left(-A_{J Z} U, X\right)=\bar{g}\left(J \nabla_{U}^{*} Z, X\right)
$$

By applying \bar{J} on both sides, we get the identity (i).
For $Z, W \in \Gamma\left(D^{\perp}\right)$,

$$
-A_{J W} Z+B(Z, J W)=P \nabla_{Z}^{*} W+F \nabla_{Z}^{*} W+t B^{*}(Z, W)+f B^{*}(Z, W)
$$

Taking tangential parts of the above equation, we have

$$
-A_{J W} Z=P \nabla_{Z}^{*} W+t B^{*}(Z, W)
$$

Therefore,

$$
\begin{aligned}
-A_{J Z} W & =P \nabla_{W}^{*} Z+t B^{*}(W, Z) \\
A_{J W} Z-A_{J Z} W & =P[W, Z]
\end{aligned}
$$

Now for any ξ in N

$$
\bar{g}(B(J X, Y), \xi)=\bar{g}\left(\bar{\nabla}_{J X} Y-\nabla_{J X} Y, \xi\right)
$$

From the concept of holomorphic statistical manifold, we infer

$$
\begin{aligned}
\bar{g}(B(J X, Y), \xi) & =-\bar{g}\left(Y, \bar{\nabla}_{J X}^{*} \xi\right)=\bar{g}\left(Y, A_{\xi}^{*} J X\right) \\
\bar{g}\left(J B^{*}(X, Y), \xi\right) & =\bar{g}\left(J \bar{\nabla}_{X}^{*} Y, \xi\right)=-\bar{g}\left(\bar{\nabla}_{X}^{*} Y, J \xi\right)=-\bar{g}\left(Y, A_{J \xi} X\right)
\end{aligned}
$$

The above equation leads to the other two required identities.
Theorem 3.8. Let M be a CR-statistical submanifold of the holomorphic statistical manifold \bar{M}.Then the totally real distribution D^{\perp} of a $C R$-statistical submanifold is integrable if

$$
\nabla \stackrel{\perp}{W} J Z=\nabla \stackrel{\perp}{Z} J W
$$

for any $Z, W \in \Gamma\left(D^{\perp}\right)$ and ξ in N.

Proof : Since M is a holomorphic statistical manifold, therefore from (1) and (2)

$$
-A_{J W} Z+\nabla_{Z}^{\perp} J W=J \nabla_{Z}^{*} W+J B^{*}(Z, W)
$$

for $Z, W \in \Gamma\left(D^{\perp}\right)$ and ξ in N. Then,

$$
\begin{gathered}
-A_{J Z} W+\nabla_{W}^{\perp} J Z=J \nabla_{W}^{*} Z+J B^{*}(W, Z) \\
J[Z, W]=\nabla_{W}^{\perp} J Z-\nabla_{Z}^{\perp} J W
\end{gathered}
$$

Since D^{\perp} is a totally real distribution, the desired result follows.
Theorem 3.9. Let M be a $C R$-statistical submanifold of the holomorphic statistical manifold \bar{M}. Then, the distribution D is integrable if and only if the second fundamental form of M satisfies

$$
B(X, \bar{J} Y)=B(Y, \bar{J} X)
$$

for all $X, Y \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$.
Proof : For $X, Y \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$, using (6), we get

$$
\begin{aligned}
\bar{g}([X, Y], Z) & =\bar{g}\left(\bar{J} \bar{\nabla}_{X}^{*} Y, \bar{J} Z\right)-\bar{g}\left(\bar{J} \bar{\nabla}_{Y}^{*} X, \bar{J} Z\right) \\
& =\bar{g}\left(\bar{\nabla}_{X} \bar{J} Y, \bar{J} Z\right)-\bar{g}\left(\bar{\nabla}_{Y} \bar{J} X, \bar{J} Z\right) .
\end{aligned}
$$

Therefore, we infer

$$
\bar{g}([X, Y], Z)=\bar{g}(B(X, \bar{J} Y)-B(Y, \bar{J} X), \bar{J} Z)
$$

Hence the result.
Definition 3.10. A $C R$-statistical submanifold of a holomorphic statistical manifold is called mixed foliate if the distribution is integrable and M is mixed totally geodesic with respect to $\bar{\nabla}$ (resp. $\left.\bar{\nabla}^{*}\right)$.

Theorem 3.11. Let M be a mixed foliate $C R$-statistical submanifold of the holomorphic statistical manifold \bar{M}. Then,

$$
\bar{g}(R(X, \bar{J} X) Z, \bar{J} Z)=-2 \bar{g}\left(A_{\bar{J} Z}^{*} \bar{J} X, \bar{J} A_{\bar{J} Z}^{*} X\right)
$$

for all $X \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$.
Proof : For $X \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$ in a mixed foliate submanifold M of \bar{M}, we get

$$
\bar{g}(R(X, \bar{J} X) Z, \bar{J} Z)=-\bar{g}\left(B\left(\bar{J} X, \nabla_{X} Z\right), \bar{J} Z\right)+\bar{g}\left(B\left(X, \nabla_{\bar{J} X} Z, \bar{J} Z\right) .\right.
$$

From equation (3), we obtain

$$
\bar{g}(R(X, \bar{J} X) Z, \bar{J} Z)=-\bar{g}\left(A_{\bar{J} Z}^{*} \bar{J} X, \nabla_{X} Z\right)+\bar{g}\left(A_{\bar{J} Z}^{*} X, \nabla_{\bar{J} X} Z\right) .
$$

Now from Theorem (3.7), we derive

$$
\bar{g}(R(X, \bar{J} X) Z, \bar{J} Z)=-\bar{g}\left(A_{\bar{J} Z}^{*} \bar{J} X, \bar{J} A_{\bar{J} Z}^{*} X\right)-\bar{g}\left(\bar{J} A_{\bar{J} Z}^{*} X, A_{\bar{J} Z}^{*} \bar{J} X\right) .
$$

Thus, the result follows.

4. $C R$-product in the holomorphic statistical manifold

In this section, we study the statistical version of $C R$-product in the holomorphic statistical manifold. We also derive conditions for a $C R$-statistical manifold to be a $C R$-product.

Definition 4.1. [6] A $C R$-statistical submanifold M of holomorphic statistical manifold is called a $C R$-product if both the distribution D and D^{\perp} define totally geodesic foliations on M.

Lemma 4.2. Let M be a $C R$-statistical submanifold of the holomorphic statistical manifold \bar{M}. Then the distribution D defines a totally geodesic foliation with respect to $\bar{\nabla}$ (resp. $\left.\bar{\nabla}^{*}\right)$ if and only if

$$
B^{*}(X, \bar{J} Y)=0(\text { resp. } B(X, \bar{J} Y)=0)
$$

for any $X, Y \in \Gamma(D)$ and $V \in \Gamma\left(D^{\perp}\right)$.
Proof : For $X, Y \in \Gamma(D)$ and $V \in \Gamma\left(D^{\perp}\right)$,

$$
\begin{aligned}
& \bar{g}\left(\nabla_{X} Y, V\right)=\left(\bar{J} \bar{\nabla}_{X} Y, \bar{J} V\right)=\bar{g}\left(\bar{\nabla}_{X}^{*} \bar{J} Y, \bar{J} V\right) \\
& \bar{g}\left(\nabla_{X} Y, V\right)=\bar{g}\left(B^{*}(X, \bar{J} Y), \bar{J} V\right)
\end{aligned}
$$

Further, since D defines a totally geodesic foliation, therefore the required outcome ensues from the concept of holomorphic statistical manifold.

Lemma 4.3. For a $C R$-statistical submanifold M of the holomorphic statistical manifold \bar{M}, the distribution D^{\perp} defines a totally geodesic foliation with respect to $\bar{\nabla}$ (resp. $\bar{\nabla}^{*}$) in M if and only if

$$
\bar{g}\left(B\left(D, D^{\perp}\right), J D^{\perp}\right)=0\left(\text { resp. } \bar{g}\left(B^{*}\left(D, D^{\perp}\right), J D^{\perp}\right)=0\right)
$$

for any $X, Y \in \Gamma(D)$ and $V, W \in \Gamma\left(D^{\perp}\right)$.
Proof: From (2), (3), we have

$$
\bar{g}(B(X, V), \bar{J} W)=\bar{g}\left(A_{\bar{J} W}^{*} V, X\right)=-\bar{g}\left(\bar{\nabla}_{V}^{*} \bar{J} W, X\right)=\bar{g}\left(\bar{J} \bar{\nabla}_{V} W, X\right)
$$

for $X, Y \in \Gamma(D)$ and $V, W \in \Gamma\left(D^{\perp}\right)$.
Further from equation (6), we derive

$$
\bar{g}(B(X, V), \bar{J} W)=\bar{g}\left(\bar{\nabla}_{V} W, \bar{J} X\right)=\bar{g}\left(\nabla_{V} W, \bar{J} X\right)
$$

Therefore, the hypothesis leads to the desired result.
Lemma 4.4. A $C R$-statistical submanifold of a holomorphic statistical manifold \bar{M} is a $C R$ product if

$$
A_{J D^{\perp}} D=0\left(\text { resp. } A_{J D^{\perp}}^{*} D=0\right) .
$$

Proof : For $X \in \Gamma(D)$ and $Y, Z \in \Gamma\left(D^{\perp}\right)$, using equation (3), we have

$$
\bar{g}\left(A_{\bar{J} Z} X, Y\right)=\bar{g}\left(B^{*}(X, Y), \bar{J} Z\right)
$$

This implies that D^{\perp} defines a totally geodesic foliation with respect to $\bar{\nabla}$. Similarly,

$$
\bar{g}\left(A_{\bar{J} Z} X, Y\right)=\bar{g}\left(B^{*}(X, Y), \bar{J} Z\right)
$$

for $X, Y \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$, which shows that D defines a totally geodesic foliation in M. Hence M is a $C R$-product.

Conversely, if M is a $C R$ product, then both the distribution D and D^{\perp} define totally geodesic foliations on M. Therefore, using (3), we obtain $A_{J D^{\perp}} D=$ 0 for $X \in \Gamma(D)$ and $Y, Z \in \Gamma\left(D^{\perp}\right)$. Also, for $X, Y \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$, $A_{J D^{\perp}}^{*} D=0$. Thus the assertion.

Lemma 4.5. Let M be a $C R$ statistical submanifold of the holomorphic statistical manifold \bar{M}. If the leaf M^{\perp} of D^{\perp} is totally geodesic with respect to $\bar{\nabla}$ (resp. $\left.\bar{\nabla}^{*}\right)$ and D is integrable, then for any X in D and ξ in $J D^{\perp}$, we have

$$
J A_{\xi} X=-A_{\xi} J X\left(\text { resp. } J A_{\xi}^{*} X=-A_{\xi}^{*} J X\right)
$$

Proof :For any $X, Y \in \Gamma(D)$ and $\xi \in J D^{\perp}$, we have

$$
\bar{g}\left(J A_{\xi} X, Y\right)=-\bar{g}\left(A_{\xi} X, J Y\right)=-\bar{g}\left(B^{*}(X, J Y), \xi\right)
$$

Now from Theorem (3.9), we obtain

$$
\bar{g}\left(J A_{\xi} X, Y\right)=-\bar{g}\left(B^{*}(J X, Y), \xi\right)=-\bar{g}\left(A_{\xi} J X, Y\right)
$$

The similar approach holds for the dual part. Hence proved.
Let P and f be the endomorphisms of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$ respectively. Let F and t be the normal-valued 1-form on $T M$ and tangent valued 1-form on $T M^{\perp}$ as defined in (8) and (9). Then

$$
\begin{align*}
\nabla_{X} P Y-P \nabla_{X}^{*} Y & =A_{F Y} X+t B^{*}(X, Y), \tag{10}\\
\nabla_{X}^{\perp} F Y-F \nabla_{X}^{*} Y & =f B^{*}(X, Y)-B(X, P Y), \tag{11}\\
\nabla_{X} t \xi-t \nabla_{X}^{\perp *} \xi & =A_{f \xi} X-P A_{\xi}^{*} X, \tag{12}\\
\nabla_{X}^{\perp} f \xi-f \nabla_{X}^{\perp} \xi & =-F A_{\xi}^{*} X-B(X, t \xi)
\end{align*}
$$

Theorem 4.6. A $C R$-statistical submanifold of a holomorphic statistical manifold M is a $C R$ product if and only if

$$
\nabla_{X} P Y=P \nabla_{X}^{*} Y
$$

Proof: For any vectors X, Y tangent to M,

$$
A_{F Y} X=-t B^{*}(X, Y)
$$

follows using equation (10) and the hypothesis. For $U \in \Gamma(D)$, we get $t B^{*}(X, U)=$ 0 which implies that $A_{J Z} U=0$ for any Z in D^{\perp} and U in D. Thus,

$$
\bar{g}\left(A_{\bar{J} Z} U, W\right)=\bar{g}\left(B^{*}(U, W), \bar{J} Z\right)
$$

From Lemma (4.3), we conclude that D^{\perp} defines a totally geodesic foliation in M. Now, for any X, Y in D and Z in D^{\perp}, Theorem (3.7) leads to

$$
\begin{aligned}
0 & =\bar{g}\left(A_{\bar{J} Z} Y, X\right)=\bar{g}\left(\bar{J} A_{\bar{J} Z} Y, \bar{J} X\right)=\bar{g}\left(\nabla_{Y}^{*} Z, \bar{J} X\right) \\
& =-\bar{g}\left(Z, \bar{\nabla}_{Y} \bar{J} X\right)=-\bar{g}\left(Z, \nabla_{Y} \bar{J} X\right) .
\end{aligned}
$$

This implies that D defines a totally geodesic foliation in M. Hence \bar{M} is a $C R$-product in \bar{M}.

Conversely, if M is a $C R$ product, then both the distributions D and D^{\perp} define a totally geodesic foliations on M. For $Y \in \Gamma(D)$ and $X \in \Gamma(T M)$, $\nabla_{X} Y \in \Gamma(D)$. Applying Gauss formula to equation (6) and on comparing normal components, we have $B(X, \bar{J} Y)=\bar{J} B^{*}(X, Y)$. Hence, for $Y \in \Gamma(D)$, we get $\nabla_{X} P Y=P \nabla_{X}^{*} Y$. Similarly, for $Y \in \Gamma\left(D^{\perp}\right)$ and $X \in \Gamma(T M), \nabla_{X} Y \in$ $\Gamma\left(D^{\perp}\right)$ which proves the result.

Theorem 4.7. Let M be a $C R$-product of a holomorphic statistical manifold \bar{M}. Then for any unit vectors X in D and Z in D^{\perp}, we have

$$
\bar{g}(R(X, \bar{J} X) Z, \bar{J} Z)=-2 \bar{g}\left(B(X, Z), B^{*}(X, Z)\right)
$$

Proof: Let M be a $C R$-product in \bar{M}. Then for any unit vectors X in D and Z in D^{\perp} and using equations (4) and (5), we derive

$$
\begin{aligned}
\bar{g}(R(X, \bar{J} X) Z, \bar{J} Z) & =\bar{g}\left(\nabla_{X}^{\perp} B(\bar{J} X, Z)-\nabla_{\bar{J} X}^{\perp} B(X, Z), \bar{J} Z\right) \\
& =-\bar{g}\left(B(\bar{J} X, Z), \nabla_{X}^{\perp *} \bar{J} Z\right)+\bar{g}\left(B(X, Z), \nabla \stackrel{\perp}{\bar{J}} X_{*} \bar{J} Z\right) \\
& =-\bar{g}\left(B(\bar{J} X, Z), \bar{J} \bar{\nabla}_{X} Z\right)+\bar{g}\left(B(X, Z), \bar{J} \bar{\nabla}_{\bar{J} X} Z\right) .
\end{aligned}
$$

Further, using Lemma (4.4), we obtain

$$
\begin{aligned}
& \bar{g}(R(X, \bar{J} X) Z, \bar{J} Z)=-\bar{g}(B(\bar{J} X, Z), \bar{J} B(X, Z))+\bar{g}(B(X, Z), \bar{J} B(\bar{J} X, Z)) \\
& \bar{g}(R(X, \bar{J} X) Z, \bar{J} Z)=-2 \bar{g}\left(B^{*}(X, Z), B(X, Z)\right)
\end{aligned}
$$

Hence the result follows.
Remark: Let \bar{M} be a holomorphic statistical manifold with negative holomorphic sectional curvature. Then every $C R$-product in \bar{M} is either a holomorphic submanifold or a totally real submanifold.

Theorem 4.8. For a $C R$-statistical submanifold M of a holomorphic statistical manifold $\bar{M}, \nabla_{X} t \xi=t \nabla \stackrel{\rightharpoonup}{X}^{*} \xi$ if and only if $\nabla_{X}^{\perp} F Y=F \nabla_{X}^{*} Y$.

Proof: For any $X, Y \in \Gamma(T M), \xi \in \Gamma\left(T^{\perp} M\right)$, the hypothesis alongwith equation (12) leads to

$$
\bar{g}\left(A_{f \xi} X, Y\right)=\bar{g}\left(P A_{\xi}^{*} X, Y\right)
$$

From (3), we obtain

$$
\bar{g}\left(A_{f \xi} X, Y\right)=-\bar{g}\left(\bar{J} B^{*}(X, Y), \xi\right)
$$

Also,

$$
\bar{g}\left(P A_{\xi}^{*} X, Y\right)=-\bar{g}(B(X, P Y), \xi)
$$

Therefore, we get

$$
\left.\bar{g}\left(f B^{*}(X, Y), \xi\right)=\bar{g}(B(X, P Y)), \xi\right)
$$

The result follows from (11).
Theorem 4.9. Let M be a $C R$-statistical submanifold of a holomorphic statistical manifold \bar{M}. If $\nabla \frac{1}{X} F Y=F \nabla_{X}^{*} Y$, then M is a $C R$ - product.

Proof: From equation (11) and using the given condition, we get

$$
f B^{*}(X, Y)=B(X, P Y)
$$

For any Y in D^{\perp}, we have $f B^{*}(X, Y)=0$. Therefore $\bar{g}\left(f B^{*}(X, Y), Y\right)=0$. It follows from equation (8) that $\bar{g}\left(B^{*}(X, Y), \bar{J} Y\right)=0$ and hence $\bar{g}\left(A_{\bar{J} Y} X, Y\right)=$ 0 . Thus $A_{J D^{\perp}} D=0$. So by Lemma (4.4), M is a $C R$-product.

Following [12], we present an example of a $C R$-product in the holomorphic statistical manifold.

Example 4.10. Let $\mathbb{C}^{2}=\left(\mathbb{R}^{4}, g, J\right)$ be the complex Euclidean space, that is $g=\sum_{i=1}^{4} d x^{i} \otimes d x^{i}$ and $J \frac{\partial}{\partial x^{i}}=\frac{\partial}{\partial x^{i+2}}, i=1,2, J \frac{\partial}{\partial x^{i}}=-\frac{\partial}{\partial x^{i-2}}, i=$ 3,4. For functions α_{j} on $\mathbb{R}^{4}, j=1,2 \ldots .8$, define a $(1,2)$-tensor field $K=$ $\sum_{i, j, l=1}^{4} k_{i j}^{l} \frac{\partial}{\partial x^{i}} \otimes d x^{i} \otimes d x^{j}$ on \mathbb{C}^{2} as follows:

$$
\begin{aligned}
& k_{11}^{1}=\alpha_{1}, \quad k_{13}^{3}=k_{31}^{3}=k_{33}^{1}=-\alpha_{1}, \quad k_{11}^{2}=k_{12}^{1}=k_{21}^{1}=\alpha_{2}, \\
& k_{13}^{4}=k_{31}^{4}=k_{14}^{3}=k_{41}^{3}=k_{23}^{3}=k_{32}^{3}=k_{34}^{1}=k_{43}^{1}=k_{33}^{2}=-\alpha_{2}, \\
& k_{11}^{3}=k_{13}^{1}=k_{31}^{1}=\alpha_{3}, \quad k_{33}^{3}=-\alpha_{3}, \\
& k_{11}^{4}=k_{14}^{1}=k_{41}^{1}=k_{13}^{2}=k_{31}^{2}=k_{12}^{3}=k_{21}^{3}=k_{23}^{1}=k_{32}^{1}=\alpha_{4}, \\
& k_{33}^{4}=k_{34}^{3}=k_{43}^{3}=-\alpha_{4}, \quad k_{12}^{2}=k_{21}^{2}=k_{22}^{1}=\alpha_{5}, \\
& k_{14}^{4}=k_{41}^{4}=k_{44}^{1}=k_{23}^{4}=k_{32}^{4}=k_{34}^{2}=k_{43}^{2}=k_{24}^{3}=k_{42}^{3}=-\alpha_{5}, \\
& k_{22}^{2}=\alpha_{6}, \quad k_{24}^{4}=k_{42}^{4}=k_{44}^{2}=-\alpha_{6}, \quad k_{22}^{4}=k_{24}^{2}=k_{42}^{2}=\alpha_{7}, k_{44}^{4}=-\alpha_{7}, \\
& k_{12}^{4}=k_{21}^{4}=k_{14}^{2}=k_{41}^{2}=k_{24}^{1}=k_{42}^{1}=k_{23}^{2}=k_{32}^{2}=k_{22}^{3}=\alpha_{8}, \\
& k_{34}^{4}=k_{43}^{4}=k_{44}^{3}=-\alpha_{8} .
\end{aligned}
$$

Here, K satisfies the conditions of Lemma (2.3). Therefore $\bar{M}=\left(\mathbb{R}^{4}, \bar{\nabla}=\right.$ $\left.\nabla^{g}+K, g, J\right)$ becomes a holomorphic statistical manifold.

Consider a statistical immersion $f: \mathbb{C} \otimes \mathbb{R} \rightarrow \mathbb{C}^{2}$ and a $C R$-submanifold $M=\mathbb{C} \otimes \mathbb{R}$ in \mathbb{C}^{2}. Now, (∇, g) is the induced statistical structure on M from $(\bar{\nabla}, \bar{g})$ by the immersion f. Then, (M, ∇, g) becomes a $C R$-product in the holomorphic statistical manifold \mathbb{C}^{2}.

References

[1] S. Amari, Differential geometrical methods in statistics, Lect Notes Stat 28, Springer, New York, 1985.
[2] S. Amari, Differential geometrical theory of statistics, Differential Geometry in Statistical Inference 10 (1987), 19-94.
[3] A. Bejancu, CR-submanifolds of a Kaehler manifold I, Proc Am Math Soc 69 (1978), no. 1, 135-142.
[4] A. Bejancu, CR submanifolds of a Kaehler manifold II, Trans. Am. Math. Soc. 250 (1979), 333-345.
[5] A. Bejancu, Geometry of CR-submanifolds, Math. Appl., Springer Dordrecht, Holland 23, 1986.
[6] B. Y. Chen, CR-submanifolds of a Kaehler manifold I, J. Differ. Geom. 16 (1981), no. 2, 305-322.
[7] H. Furuhata, Hypersurfaces in statistical manifolds, Differ. Geom. Appl. 27 (2009), no. 3, 420-429.
[8] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds, Geometry of Cauchy-Riemann Submanifolds, 179-215, Springer, Singapore, 2016.
[9] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, and M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117 (2017), 179-186.
[10] T. Kurose, Geometry of statistical manifolds, Mathematics in the 21st Century, (2004), 34-43.
[11] M. Milijevic, Totally real statistical submanifolds, Interdiscip. Inf. Sci. 21 (2015), no. 2, 87-96.
[12] M. Milijevic, CR submanifolds in holomorphic statistical manifold, Ph.D Thesis in Science, Department of Mathematics Graduates School of Science, Hokkaido University, 2015.

13] C. R. Rao, Information and the accuracy attainable in the estimation of statistical parameters, Bull Calcutta Math Soc 37 (1945), 81-91.
[14] A. N. Siddiqui and M. H. Shahid, On totally real statistical submanifolds, Filomat 32 (2018), no. 13, 4473-4483.
[15] A. N. Siddiqui, F. R. AL-Solamy, M. H. Shahid, and I. Mihai, On CR-statistical submanifolds of holomorphic statistical manifolds, Filomat 35 (2021), no. 11, 3571-3584.
[16] U. Simon, Affine differential geometry, In Handbook of differential geometry, Elsevier 1 (2000), 905-961.
[17] P. W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann Inst Stat Math 41 (1989), no. 3, 429-450.
[18] K. Yano, and M. Kon, Structures on Manifolds, World Scientific, Singapore, Series in Pure Mathematics 3, 1984.
[19] A. Yazla, I. K. Erken, and C. Murathan, Almost cosymplectic statistical manifolds, preprint (2018) ; arXiv:1801.09890.

Vandana Gupta
Department of Mathematics, PMN College, Rajpura,
Patiala, Punjab, India.
E-mail: vgupta.87@rediffmail.com

Jasleen Kaur
Department of Mathematics, Punjabi University,
Patiala, Punjab, India.
E-mail: jass2381@gmail.com

[^0]: Received July 8, 2023. Accepted December 29, 2023.
 2020 Mathematics Subject Classification. Primary 53C15, 53C25, 53B05, 53B35.
 Key words and phrases. $C R$-statistical submanifold, totally geodesic foliation, $C R$ product, holomorphic statistical manifold.
 *Corresponding author

