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CR-PRODUCT OF A HOLOMORPHIC STATISTICAL

MANIFOLD

Vandana Gupta and Jasleen Kaur∗

Abstract. This study inspects the structure of CR-product of a holo-

morphic statistical manifold. Findings concerning geodesic submanifolds

and totally geodesic foliations in the context of dual connections have been
demonstrated. The integrability of distributions in CR-statistical sub-

manifolds has been characterized. The statistical version of CR-product

in the holomorphic statistical manifold has been researched. Additionally,
some assertions for curvature tensor field of the holomorphic statistical

manifold have been substantiated.

1. Introduction

The analysis of geometric structures on sets of certain probability distribu-
tions led to the emergence of the statistical manifold. Introduced by [13] and
investigated thoroughly by [1], [2], [10], [16], [17], these manifolds have applica-
tions in the field of statistical inference, neural networks, control system, face
recognition and image analysis, etc.

The concept of CR-submanifolds of a Kaehler manifold was first initiated by
[3] and further developed by [4], [6], [5], [18]. The researchers explored the ge-
ometry of CR-submanifolds in various manifolds such as a Hermitian manifold,
a Sasakian manifold, and a Kenmotsu manifold etc. Their statistical version,
namely, CR-statistical submanifolds in holomorphic statistical manifolds was
investigated intensively by Furuhata et al. [8], [7], [9]. Contemporarily, [11],
[12], [14] and [15] et al. obtained several results on CR-statistical submanifolds
of the holomorphic statistical manifold.

In the present research work, various results for the geodesicity and totally
geodesic foliations in CR-statistical submanifolds of the holomorphic statistical
manifold have been developed. The integrability of totally real distributions
has been worked upon. The conditions for a CR- statistical submanifold to be a
CR-product have been derived. Some expressions for the curvature tensor field
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in the structure of a mixed foliate CR-statistical submanifold and CR-product
of the holomorphic statistical manifold have been provided.

2. Preliminaries

This section addresses some key concepts pertaining to the theory of sub-
manifolds of a holomorphic statistical manifold.

Definition 2.1. [8] Let M̄ be a C∞ manifold of dimension m̄ ≥ 2, ∇̄ be an
affine connection on M̄ , and ḡ be a Riemannian metric on M̄ . Then (M̄ ,∇̄,ḡ)
is called a statistical manifold if
(i) ∇̄ is of torsion free, and
(ii) (∇̄X ḡ)(Y, Z) = (∇̄Y ḡ)(X,Z) for X,Y, Z ∈ Γ(TM̄).

Moreover, an affine connection ∇̄∗ is called the dual connection of ∇̄ with
respect to ḡ if

Xḡ(Y, Z) = ḡ(∇̄XY, Z) + ḡ(Y, ∇̄∗
XZ) for X,Y, Z ∈ Γ(TM̄).

If (M̄ ,∇̄,ḡ) is a statistical manifold, then so is (M̄ ,∇̄∗,ḡ). We therefore denote
the statistical manifold by (M̄, ḡ, ∇̄, ∇̄∗).

Let M be a submanifold of a statistical manifold (M̄ ,∇̄, ḡ) and g be the
induced metric on M . If the normal space of M is denoted by T⊥

x M : ={v ∈
TxM̄ | ḡ(v, w) = 0, w ∈ TxM}, then the Gauss and Weingarten formulae are
given by

∇̄XY = ∇XY +B(X,Y ), ∇̄Xξ = −AξX +∇⊥
Xξ,(1)

∇̄∗
XY = ∇∗

XY +B∗(X,Y ), ∇̄∗
Xξ = −A∗

ξX +∇⊥∗
X ξ,(2)

for X, Y ∈ Γ(TM), ξ ∈ Γ(T⊥M).

Further, the following holds for X, Y ∈ Γ(TM), ξ ∈ Γ(T⊥M):

(3) ḡ(B(X,Y ), ξ) = g(A∗
ξX,Y ), ḡ(B∗(X,Y ), ξ) = g(AξX,Y ).

Let R̄ and R be the curvature tensor fields with respect to ∇̄ and ∇, re-
spectively. Then the equations of Gauss and Codazzi are respectively given
by

ḡ(R̄(X,Y )Z,W ) = ḡ(R(X,Y )Z,W ) + ḡ(B(X,Z), B∗(Y,W ))(4)

− ḡ(B∗(X,W ), B(Y, Z)),

ḡ(R̄(X,Y )Z, JZ) = ḡ((∇̄XB)(Y, Z)− (∇̄Y B)(X,Z), JZ),(5)

where (∇̄XB)(Y, Z) = ∇⊥
XB(Y,Z)−B(∇XY,Z)−B(Y,∇XZ) for X,Y, Z and

W tangent to M .
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Definition 2.2. [12] Let (M̄, J̄ , ḡ) be a Kaehler manifold and ∇̄ an affine
connection of M̄ . Then, (M̄, ∇̄, J̄ , ḡ) is called a holomorphic statistical manifold
if
(i) (M̄ ,∇̄,ḡ) is a statistical manifold, and
(ii) ω is a ∇̄- parallel 2-form on M̄ , where ω is defined by ω(X,Y ) = ḡ(X, J̄Y ),
for any X,Y ∈ Γ(TM).

Lemma 2.3. [7] Let (M̄, J̄ , ¯̄g) be a Kaehler manifold. If we define a con-
nection ∇̄ as ∇̄ = ∇̄◦ +K, where ∇̄◦ is a Levi-Civita connection on M̄ and K
is a (1,2)-tensor field satisfying the following conditions:

K(X,Y ) = K(Y,X),

ḡ(K(X,Y ), Z) = ḡ(Y,K(X,Z)),

K(X, J̄Y ) = −J̄K(X,Y ),

for X,Y, Z ∈ Γ(TM̄), then (M̄, ∇̄, J̄ , ḡ) is a holomorphic statistical manifold.

Lemma 2.4. [12] Let (M̄, ∇̄, J̄ , ¯̄g) be a holomorphic statistical manifold.
Then

(6) ∇̄X J̄Y = J̄∇̄∗
XY,

for X,Y, Z ∈ Γ(TM), where ∇̄∗ is the dual connection of ∇̄ with respect to ḡ.

Example 2.5. [12] For c ∈ R, let O be an interval in {t > 0|1− 2ct3 > 0}
and set a domain Ω = O ×R in the (u1, u2)-plane R2. J denotes the standard
complex structure on Ω, determined by J ∂

∂u1 = ∂
∂u2 . Define a Riemannian

metric g and an affine connection ∇̄ on Ω by

g = u1{(du1)2 + (du2)2},

∇̄ ∂
∂u1

∂

∂u1
= −1

2
ϕ(u1)−1 ∂

∂u1
,

∇̄ ∂
∂u1

∂

∂u2
= ∇̄ ∂

∂u2

∂

∂u1
= (u1)−1(1 +

1

2
ϕ(u1))

∂

∂u2
,

∇̄ ∂
∂u2

∂

∂u2
= −1

2
ϕ(u1)−1 ∂

∂u2
,

where ϕ(t) = −1 ±
√
1− 2ct3. Then (Ω, ∇̄, g, J) is a holomorphic statistical

manifold of constant holomorphic sectional curvature c.

3. CR-statistical submanifolds of a holomorphic statistical mani-
fold

Definition 3.1. (M̄, ∇̄, J̄ , ḡ) be a holomorphic statistical manifold. Then a
statistical submanifold M is called CR- statistical submanifold of holomorphic
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statistical manifold if it is endowed with the pair of orthogonal distributions
(D,D⊥) satisfying the following conditions:

TM = D ⊕D⊥.

The distribution D is invariant if

J̄(Dx) = Dx for each x ∈ M.

The distribution D⊥ is anti-invariant if

J̄(D⊥
x ) ⊂ T⊥

x M for each x ∈ M.

The projection morphisms of TM to D and D⊥ are denoted by T and R,
respectively. Then we have

X = TX +RX,(7)

J̄ξ = tξ + fξ,(8)

for X ∈ Γ(TM) and ξ ∈ Γ(T⊥M), where tξ and fξ denote the tangential and
the normal components of J̄ξ, respectively.

Applying J̄ to equation (7), we obtain

J̄X = J̄TX + J̄LX.

If we put J̄TX = PX and J̄LX = FX, then

(9) J̄X = PX + FX,

where PX ∈ Γ(D) and FX ∈ Γ(D⊥). We denote the orthogonal complemen-
tary distribution to J̄(D⊥) in Γ(TM⊥) by N . Then we have

TM⊥ = J̄(D⊥)⊕N.

Definition 3.2. A CR-statistical submanifold of a holomorphic statistical
manifold is called D-totally geodesic with respect to ∇̄ (resp. ∇̄∗) if B(X,Y )
= 0 (resp. B∗(X,Y ) = 0) for all X,Y ∈ D.

Definition 3.3. A CR-statistical submanifold of a holomorphic statisti-
cal manifold is called mixed totally geodesic with respect to ∇̄ (resp. ∇̄∗) if
B(X,Y ) = 0 (resp. B∗(X,Y )= 0) for X ∈ D and Y ∈ D⊥.

Theorem 3.4. Let M be a CR-statistical submanifold of the holomorphic
statistical manifold M̄ . Then, M is D-totally geodesic with respect to ∇̄ (resp.
∇̄∗) if and only if A∗

ξX (resp. AξX ) has no component in D.

Proof : M is D-totally geodesic with respect to ∇̄ if and only if

ḡ(B(X, J̄Y ), ξ) = 0

for all X,Y ∈ D and ξ ∈ Γ(TM⊥).
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Since M is a CR-statistical submanifold, therefore

ḡ(B(X, J̄Y ), ξ) = ḡ(∇̄X J̄Y, ξ) = −ḡ(J̄Y, ∇̄∗
Xξ)

follows using (1). Further, from equation (2),

ḡ(B(X, J̄Y ), ξ) = ḡ(A∗
ξX, J̄Y ).

Hence the hypothesis leads to the required assertion. Similarly, the correspond-
ing result holds for the dual connection.

Theorem 3.5. Let M be a CR-statistical submanifold of the holomorphic
statistical manifold M̄ .Then,

1. the distribution D defines a totally geodesic foliation with respect to ∇̄
(resp. ∇̄∗) if and only if AJ̄ZX (resp. A∗

J̄Z
X) has no component in D.

2. the distribution D⊥ defines a totally geodesic foliation with respect to ∇̄
(resp. ∇̄∗) if and only if B(X,Z) (resp. B∗(X,Z)) has no component in
D⊥.

Proof : The distribution D defines a totally geodesic foliation if and only if
ḡ(∇XY, Z) = 0 for all X,Y ∈ Γ(D) and Z ∈ Γ(D⊥).

Using (1), we have

ḡ(∇X J̄Y, Z) = ḡ(∇̄X J̄Y, Z) = ḡ(J̄∇∗
XY,Z)

= ḡ(Y, ∇̄X J̄Z) = ḡ(Y,AJ̄ZX).

From the hypothesis with respect to dual connection ∇̄∗, we get ((1). The
distribution D⊥ defines a totally geodesic foliation if and only if ḡ(∇XY, Z) = 0
for all X,Y ∈ Γ(D⊥) and Z ∈ Γ(D).

Now from (1),

ḡ(∇XY, J̄Z) = ḡ(∇̄XY, J̄Z)

= −ḡ(Y, ∇̄∗
X J̄Z) = ḡ(J̄Y,B(X,Z)),

which completes the proof.

Theorem 3.6. Let M be a CR-statistical submanifold of the holomorphic
statistical manifold M̄ . If M is a totally geodesic submanifold with respect to
∇̄ and ∇̄∗, then TM⊥ is a Killing distribution on M .

Proof : From equation (1) and using the relationship of dual connections in
holomorphic statistical manifold, we get

ḡ(B(X,Y ), ξ) = ḡ(∇̄XY, ξ) = −ḡ(Y, ∇̄∗
Xξ)

= −ḡ(Y, [X, ξ])− ḡ(Y, ∇̄∗
ξX)

= −ḡ(Y, [X, ξ])− ξḡ(Y,X) + ḡ(∇̄ξY,X)

= −ḡ(Y, [X, ξ])− ξḡ(Y,X) + ḡ(∇̄Y ξ,X) + ḡ([ξ, Y ], X)

= −(Lξ ḡ)(X,Y )− ḡ(∇̄∗
Y X, ξ),

ḡ(B(X,Y ), ξ) = −(Lξ ḡ)(X,Y )− ḡ(B∗(X,Y ), ξ).
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The totally geodesicity ofM with respect to dual connections in above equation
proves the result.

Theorem 3.7. Let M be a CR-statistical submanifold of the holomorphic
statistical manifold M̄ .Then

(i) ḡ(JAJZU,X) = ḡ(∇∗
UZ,X),

(ii) AJWZ = AJZW ,
(iii) A∗

ξJX = −AJξX,

for any U tangent to N , X ∈ Γ(D), Z,W ∈ Γ(D⊥) and ξ in N.

Proof : From Lemma 2.4, for U tangent to N , Z ∈ Γ(D⊥),

−AJZU +DUJZ = J∇∗
UZ + JB∗(U,Z).

Taking inner product with X,

ḡ(−AJZU,X) = ḡ(J∇∗
UZ,X).

By applying J̄ on both sides, we get the identity (i).

For Z,W ∈ Γ(D⊥),

−AJWZ +B(Z, JW ) = P∇∗
ZW + F∇∗

ZW + tB∗(Z,W ) + fB∗(Z,W ).

Taking tangential parts of the above equation, we have

−AJWZ = P∇∗
ZW + tB∗(Z,W ),

Therefore,

−AJZW = P∇∗
WZ + tB∗(W,Z),

AJWZ −AJZW = P [W,Z].

Now for any ξ in N

ḡ(B(JX, Y ), ξ) = ḡ(∇̄JXY −∇JXY, ξ).

From the concept of holomorphic statistical manifold, we infer

ḡ(B(JX, Y ), ξ) = −ḡ(Y, ∇̄∗
JXξ) = ḡ(Y,A∗

ξJX),

ḡ(JB∗(X,Y ), ξ) = ḡ(J∇̄∗
XY, ξ) = −ḡ(∇̄∗

XY, Jξ) = −ḡ(Y,AJξX).

The above equation leads to the other two required identities.

Theorem 3.8. Let M be a CR-statistical submanifold of the holomorphic
statistical manifold M̄ .Then the totally real distribution D⊥ of a CR-statistical
submanifold is integrable if

∇⊥
WJZ = ∇⊥

ZJW,

for any Z,W ∈ Γ(D⊥) and ξ in N .
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Proof : Since M is a holomorphic statistical manifold, therefore from (1)
and (2)

−AJWZ +∇⊥
ZJW = J∇∗

ZW + JB∗(Z,W ),

for Z,W ∈ Γ(D⊥) and ξ in N . Then,

−AJZW +∇⊥
WJZ = J∇∗

WZ + JB∗(W,Z),

J [Z,W ] = ∇⊥
WJZ −∇⊥

ZJW.

Since D⊥ is a totally real distribution, the desired result follows.

Theorem 3.9. Let M be a CR-statistical submanifold of the holomorphic
statistical manifold M̄ . Then, the distribution D is integrable if and only if the
second fundamental form of M satisfies

B(X, J̄Y ) = B(Y, J̄X),

for all X,Y ∈ Γ(D) and Z ∈ Γ(D⊥).

Proof : For X,Y ∈ Γ(D) and Z ∈ Γ(D⊥), using (6), we get

ḡ([X,Y ], Z) = ḡ(J̄∇̄∗
XY, J̄Z)− ḡ(J̄∇̄∗

Y X, J̄Z)

= ḡ(∇̄X J̄Y , J̄Z)− ḡ(∇̄Y J̄X, J̄Z).

Therefore, we infer

ḡ([X,Y ], Z) = ḡ(B(X, J̄Y )−B(Y, J̄X), J̄Z).

Hence the result.

Definition 3.10. A CR-statistical submanifold of a holomorphic statistical
manifold is called mixed foliate if the distribution is integrable and M is mixed
totally geodesic with respect to ∇̄ (resp. ∇̄∗).

Theorem 3.11. Let M be a mixed foliate CR-statistical submanifold of
the holomorphic statistical manifold M̄ . Then,

ḡ(R(X, J̄X)Z, J̄Z) = −2ḡ(A∗
J̄Z J̄X, J̄A∗

J̄ZX),

for all X ∈ Γ(D) and Z ∈ Γ(D⊥).

Proof : For X ∈ Γ(D) and Z ∈ Γ(D⊥) in a mixed foliate submanifold M of
M̄ , we get

ḡ(R(X, J̄X)Z, J̄Z) = −ḡ(B(J̄X,∇XZ), J̄Z) + ḡ(B(X,∇J̄XZ, J̄Z).

From equation (3), we obtain

ḡ(R(X, J̄X)Z, J̄Z) = −ḡ(A∗
J̄Z J̄X,∇XZ) + ḡ(A∗

J̄ZX,∇J̄XZ).

Now from Theorem (3.7), we derive

ḡ(R(X, J̄X)Z, J̄Z) = −ḡ(A∗
J̄Z J̄X, J̄A∗

J̄ZX)− ḡ(J̄A∗
J̄ZX,A∗

J̄Z J̄X).

Thus, the result follows.
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4. CR-product in the holomorphic statistical manifold

In this section, we study the statistical version of CR-product in the holo-
morphic statistical manifold. We also derive conditions for a CR-statistical
manifold to be a CR-product.

Definition 4.1. [6] A CR-statistical submanifold M of holomorphic statis-
tical manifold is called a CR-product if both the distribution D and D⊥ define
totally geodesic foliations on M .

Lemma 4.2. Let M be a CR-statistical submanifold of the holomorphic
statistical manifold M̄ . Then the distribution D defines a totally geodesic
foliation with respect to ∇̄ (resp. ∇̄∗) if and only if

B∗(X, J̄Y ) = 0 (resp. B(X, J̄Y ) = 0),

for any X,Y ∈ Γ(D) and V ∈ Γ(D⊥).

Proof : For X,Y ∈ Γ(D) and V ∈ Γ(D⊥),

ḡ(∇XY, V ) = (J̄∇̄XY, J̄V ) = ḡ(∇̄∗
X J̄Y, J̄V ),

ḡ(∇XY, V ) = ḡ(B∗(X, J̄Y ), J̄V ).

Further, since D defines a totally geodesic foliation, therefore the required
outcome ensues from the concept of holomorphic statistical manifold.

Lemma 4.3. For a CR-statistical submanifold M of the holomorphic sta-
tistical manifold M̄ , the distribution D⊥ defines a totally geodesic foliation
with respect to ∇̄ (resp. ∇̄∗) in M if and only if

ḡ(B(D,D⊥), JD⊥) = 0 (resp. ḡ(B∗(D,D⊥), JD⊥) = 0),

for any X, Y ∈ Γ(D) and V, W ∈ Γ(D⊥).

Proof : From (2), (3), we have

ḡ(B(X,V ), J̄W ) = ḡ(A∗
J̄WV,X) = −ḡ(∇̄∗

V J̄W,X) = ḡ(J̄∇̄V W,X),

for X,Y ∈ Γ(D) and V,W ∈ Γ(D⊥).

Further from equation (6), we derive

ḡ(B(X,V ), J̄W ) = ḡ(∇̄V W, J̄X) = ḡ(∇V W, J̄X).

Therefore, the hypothesis leads to the desired result.

Lemma 4.4. A CR-statistical submanifold of a holomorphic statistical
manifold M̄ is a CR product if

AJD⊥D = 0 (resp. A∗
JD⊥D = 0).
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Proof : For X ∈ Γ(D) and Y,Z ∈ Γ(D⊥), using equation (3), we have

ḡ(AJ̄ZX,Y ) = ḡ(B∗(X,Y ), J̄Z).

This implies that D⊥ defines a totally geodesic foliation with respect to ∇̄.
Similarly,

ḡ(AJ̄ZX,Y ) = ḡ(B∗(X,Y ), J̄Z),

for X,Y ∈ Γ(D) and Z ∈ Γ(D⊥), which shows that D defines a totally geodesic
foliation in M . Hence M is a CR-product.

Conversely, if M is a CR product, then both the distribution D and D⊥ de-
fine totally geodesic foliations on M . Therefore, using (3), we obtain AJD⊥D =
0 for X ∈ Γ(D) and Y, Z ∈ Γ(D⊥). Also, for X,Y ∈ Γ(D) and Z ∈ Γ(D⊥),
A∗

JD⊥D = 0. Thus the assertion.

Lemma 4.5. Let M be a CR statistical submanifold of the holomorphic
statistical manifold M̄ . If the leaf M⊥ of D⊥ is totally geodesic with respect
to ∇̄ (resp. ∇̄∗) and D is integrable, then for any X in D and ξ in JD⊥, we
have

JAξX = −AξJX (resp. JA∗
ξX = −A∗

ξJX).

Proof :For any X,Y ∈ Γ(D) and ξ ∈ JD⊥, we have

ḡ(JAξX,Y ) = −ḡ(AξX,JY ) = −ḡ(B∗(X, JY ), ξ).

Now from Theorem (3.9), we obtain

ḡ(JAξX,Y ) = −ḡ(B∗(JX, Y ), ξ) = −ḡ(AξJX, Y ).

The similar approach holds for the dual part. Hence proved.

Let P and f be the endomorphisms of the tangent bundle TM and the
normal bundle TM⊥ respectively. Let F and t be the normal-valued 1-form on
TM and tangent valued 1-form on TM⊥ as defined in (8) and (9). Then

∇XPY − P∇∗
XY = AFY X + tB∗(X,Y ),(10)

∇⊥
XFY − F∇∗

XY = fB∗(X,Y )−B(X,PY ),(11)

∇Xtξ − t∇⊥∗
X ξ = AfξX − PA∗

ξX,(12)

∇⊥
Xfξ − f∇⊥

Xξ = −FA∗
ξX −B(X, tξ).

Theorem 4.6. A CR-statistical submanifold of a holomorphic statistical
manifold M is a CR product if and only if

∇XPY = P∇∗
XY.

Proof : For any vectors X, Y tangent to M ,

AFY X = −tB∗(X,Y ),
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follows using equation (10) and the hypothesis. For U ∈ Γ(D), we get tB∗(X,U) =
0 which implies that AJZU = 0 for any Z in D⊥ and U in D. Thus,

ḡ(AJ̄ZU,W ) = ḡ(B∗(U,W ), J̄Z).

From Lemma (4.3), we conclude that D⊥ defines a totally geodesic foliation in
M . Now, for any X,Y in D and Z in D⊥, Theorem (3.7) leads to

0 = ḡ(AJ̄ZY,X) = ḡ(J̄AJ̄ZY, J̄X) = ḡ(∇∗
Y Z, J̄X)

= −ḡ(Z, ∇̄Y J̄X) = −ḡ(Z,∇Y J̄X).

This implies that D defines a totally geodesic foliation in M . Hence M̄ is a
CR-product in M̄ .

Conversely, if M is a CR product, then both the distributions D and D⊥

define a totally geodesic foliations on M . For Y ∈ Γ(D) and X ∈ Γ(TM),
∇XY ∈ Γ(D). Applying Gauss formula to equation (6) and on comparing
normal components, we have B(X, J̄Y ) = J̄B∗(X,Y ). Hence, for Y ∈ Γ(D),
we get ∇XPY = P∇∗

XY . Similarly, for Y ∈ Γ(D⊥) and X ∈ Γ(TM), ∇XY ∈
Γ(D⊥) which proves the result.

Theorem 4.7. Let M be a CR-product of a holomorphic statistical man-
ifold M̄ . Then for any unit vectors X in D and Z in D⊥, we have

ḡ(R(X, J̄X)Z, J̄Z) = −2ḡ(B(X,Z), B∗(X,Z)).

Proof : Let M be a CR-product in M̄ . Then for any unit vectors X in D
and Z in D⊥ and using equations (4) and (5), we derive

ḡ(R(X, J̄X)Z, J̄Z) = ḡ(∇⊥
XB(J̄X, Z)−∇⊥

J̄XB(X,Z), J̄Z)

= −ḡ(B(J̄X, Z),∇⊥∗
X J̄Z) + ḡ(B(X,Z),∇⊥∗

J̄X J̄Z)

= −ḡ(B(J̄X, Z), J̄∇̄XZ) + ḡ(B(X,Z), J̄∇̄J̄XZ).

Further, using Lemma (4.4), we obtain

ḡ(R(X, J̄X)Z, J̄Z) = −ḡ(B(J̄X, Z), J̄B(X,Z)) + ḡ(B(X,Z), J̄B(J̄X, Z)),

ḡ(R(X, J̄X)Z, J̄Z) = −2ḡ(B∗(X,Z), B(X,Z)).

Hence the result follows.

Remark: Let M̄ be a holomorphic statistical manifold with negative holo-
morphic sectional curvature. Then every CR-product in M̄ is either a holo-
morphic submanifold or a totally real submanifold.

Theorem 4.8. For a CR-statistical submanifold M of a holomorphic sta-
tistical manifold M̄ , ∇Xtξ = t∇⊥∗

X ξ if and only if ∇⊥
XFY = F∇∗

XY .

Proof : For any X,Y ∈ Γ(TM), ξ ∈ Γ(T⊥M), the hypothesis alongwith
equation (12) leads to

ḡ(AfξX,Y ) = ḡ(PA∗
ξX,Y ).
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From (3), we obtain

ḡ(AfξX,Y ) = −ḡ(J̄B∗(X,Y ), ξ).

Also,
ḡ(PA∗

ξX,Y ) = −ḡ(B(X,PY ), ξ).

Therefore, we get

ḡ(fB∗(X,Y ), ξ) = ḡ(B(X,PY )), ξ).

The result follows from (11).

Theorem 4.9. Let M be a CR-statistical submanifold of a holomorphic
statistical manifold M̄ . If ∇⊥

XFY = F∇∗
XY , then M is a CR- product.

Proof : From equation (11) and using the given condition, we get

fB∗(X,Y ) = B(X,PY ).

For any Y in D⊥, we have fB∗(X,Y ) = 0. Therefore ḡ(fB∗(X,Y ), Y ) = 0.
It follows from equation (8) that ḡ(B∗(X,Y ), J̄Y ) = 0 and hence ḡ(AJ̄Y X,Y ) =
0. Thus AJD⊥D = 0. So by Lemma (4.4), M is a CR-product.

Following [12], we present an example of a CR-product in the holomorphic
statistical manifold.

Example 4.10. Let C2 = (R4, g, J) be the complex Euclidean space, that

is g =
∑4

i=1 dx
i ⊗ dxi and J ∂

∂xi = ∂
∂xi+2 , i = 1, 2, J ∂

∂xi = − ∂
∂xi−2 , i =

3, 4. For functions αj on R4, j = 1, 2....8, define a (1, 2)-tensor field K =∑4
i,j,l=1 k

l
ij

∂
∂xi ⊗ dxi ⊗ dxj on C2 as follows:

k111 = α1, k313 = k331 = k133 = −α1, k211 = k112 = k121 = α2,

k413 = k431 = k314 = k341 = k323 = k332 = k134 = k143 = k233 = −α2,

k311 = k113 = k131 = α3, k333 = −α3,

k411 = k114 = k141 = k213 = k231 = k312 = k321 = k123 = k132 = α4,

k433 = k334 = k343 = −α4, k212 = k221 = k122 = α5,

k414 = k441 = k144 = k423 = k432 = k234 = k243 = k324 = k342 = −α5,

k222 = α6, k424 = k442 = k244 = −α6, k422 = k224 = k242 = α7, k
4
44 = −α7,

k412 = k421 = k214 = k241 = k124 = k142 = k223 = k232 = k322 = α8,

k434 = k443 = k344 = −α8.
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Here, K satisfies the conditions of Lemma (2.3). Therefore M̄ = (R4, ∇̄ =
∇g +K, g, J) becomes a holomorphic statistical manifold.

Consider a statistical immersion f : C ⊗ R → C2 and a CR-submanifold
M = C⊗ R in C2. Now, (∇, g) is the induced statistical structure on M from
(∇̄, ḡ) by the immersion f . Then, (M,∇, g) becomes a CR-product in the
holomorphic statistical manifold C2.
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