• Title/Summary/Keyword: statistical probability models

Search Result 217, Processing Time 0.024 seconds

Rank Tracking Probabilities using Linear Mixed Effect Models (선형 혼합 효과 모형을 이용한 순위 추적 확률)

  • Kwak, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.241-250
    • /
    • 2015
  • An important scientific objective of longitudinal studies involves tracking the probability of a subject having certain health condition over the course of the study. Proper definitions and estimates of disease risk tracking have important implications in the design and analysis of long-term biomedical studies and in developing guidelines for disease prevention and intervention. We study in this paper a class of rank-tracking probabilities to describe a subject's conditional probabilities of having certain health outcomes at two different time points. Linear mixed effects models are considered to estimate the tracking probabilities and their ratios of interest. We apply our methods to an epidemiological study of childhood cardiovascular risk factors.

A Bayesian Method for Narrowing the Scope fo Variable Selection in Binary Response t-Link Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.407-422
    • /
    • 2000
  • This article is concerned with the selecting predictor variables to be included in building a class of binary response t-link regression models where both probit and logistic regression models can e approximately taken as members of the class. It is based on a modification of the stochastic search variable selection method(SSVS), intended to propose and develop a Bayesian procedure that used probabilistic considerations for selecting promising subsets of predictor variables. The procedure reformulates the binary response t-link regression setup in a hierarchical truncated normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. In this setup, the most promising subset of predictors can be identified as that with highest posterior probability in the marginal posterior distribution of the hyperparameters. To highlight the merit of the procedure, an illustrative numerical example is given.

  • PDF

An Improvement on Estimation for Causal Models of Categorical Variables of Abilities and Task Performance

  • Kim, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.65-86
    • /
    • 2000
  • The estimates from an EM when it is applied to a large causal model of 10 or more categorical variables are often subject to the initial values for the estimates. This phenomenon becomes more serious as the model structure becomes more serious as the model structure becomes more complicated involving more variables. In this regard Wu(1983) recommends among others that EMs are implemented several times with different sets of initial values to obtain more appropriate estimates. in this paper a new approach for initial values is proposed. The main idea is that we use initials that are calibrated to data. A simulation result strongly indicates that the calibrated initials give rise to the estimates that are far closer to the true values than the initials that are not calibrated.

  • PDF

Initial Value Selection in Applying an EM Algorithm for Recursive Models of Categorical Variables

  • Jeong, Mi-Sook;Kim, Sung-Ho;Jeong, Kwang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.25-55
    • /
    • 1998
  • Maximum likelihood estimates (MLEs) for recursive models of categorical variables are discussed under an EM framework. Since MLEs by EM often depend on the choice of the initial values for MLEs, we explore reasonable rules for selecting the initial values for EM. Simulation results strongly support the proposed rules.

  • PDF

Probabilistic Risk Assessment Techniques for the Risk Analysis of Construction Projects (건설공사의 위험도분석을 위한 확률적 위험도 평가)

  • 조효남;임종권;박영빈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.27-34
    • /
    • 1997
  • In this paper, systematic and comprehensive approaches are suggested for the application of quantitative PRA techniques especially for those risk events that cannot be easily evaluated quantitatively In addition, dominant risk events are identified based on their occurrence frequency assessed by both actual survey of construction site conditions and the statistical data related with the probable accidents. Practical FTA(Fault Tree Analysis) and ETA(Event Tree Analysis) models are used for the assessment of the identified risks. When the risk events are lack of statistical data, appropriate Bayesian models incorporating engineering judgement and test results are also introduced in this paper. Moreover, a fuzzy probability technique is used for the quantitative risk assessment of those risk components which are difficult to evaluate quantitatively.

  • PDF

Probabilistic Analysis of Wind Loads (국내 풍하중의 확률적 특성 분석)

  • 김상효;배규웅;박홍석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.31-36
    • /
    • 1990
  • The probabilistic characteristics of wind loads have been analyzed using statistical data on wind speeds, pressure coefficient, exposure coefficient, and gust factor. The wind speed data collected in 25 nationwide weather stations have been modified to be consistent in measuring height, exposure condition as well as averaging time, Having performed Monte Carlo simulation for various heights and site conditions, the statistical models of wind loads were determined, in which Type-I extreme value distribution has been applied. The models also incorporate a reduction factor of 0.85 to account for the reduced probability that the maximum wind speed will occur in a direction most unfavorable to the response of structure.

  • PDF

Mutual Information and Redundancy for Categorical Data

  • Hong, Chong-Sun;Kim, Beom-Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.297-307
    • /
    • 2006
  • Most methods for describing the relationship among random variables require specific probability distributions and some assumptions of random variables. The mutual information based on the entropy to measure the dependency among random variables does not need any specific assumptions. And the redundancy which is a analogous version of the mutual information was also proposed. In this paper, the redundancy and mutual information are explored to multi-dimensional categorical data. It is found that the redundancy for categorical data could be expressed as the function of the generalized likelihood ratio statistic under several kinds of independent log-linear models, so that the redundancy could also be used to analyze contingency tables. Whereas the generalized likelihood ratio statistic to test the goodness-of-fit of the log-linear models is sensitive to the sample size, the redundancy for categorical data does not depend on sample size but its cell probabilities itself.

Exploring modern machine learning methods to improve causal-effect estimation

  • Kim, Yeji;Choi, Taehwa;Choi, Sangbum
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.177-191
    • /
    • 2022
  • This paper addresses the use of machine learning methods for causal estimation of treatment effects from observational data. Even though conducting randomized experimental trials is a gold standard to reveal potential causal relationships, observational study is another rich source for investigation of exposure effects, for example, in the research of comparative effectiveness and safety of treatments, where the causal effect can be identified if covariates contain all confounding variables. In this context, statistical regression models for the expected outcome and the probability of treatment are often imposed, which can be combined in a clever way to yield more efficient and robust causal estimators. Recently, targeted maximum likelihood estimation and causal random forest is proposed and extensively studied for the use of data-adaptive regression in estimation of causal inference parameters. Machine learning methods are a natural choice in these settings to improve the quality of the final estimate of the treatment effect. We explore how we can adapt the design and training of several machine learning algorithms for causal inference and study their finite-sample performance through simulation experiments under various scenarios. Application to the percutaneous coronary intervention (PCI) data shows that these adaptations can improve simple linear regression-based methods.

ON THE EXISTENCE OF THE TWEEDIE POWER PARAMETER IMPLICIT ESTIMATOR

  • Ghribi, Abdelaziz;Hassin, Aymen;Masmoudi, Afif
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.979-991
    • /
    • 2022
  • A special class of exponential dispersion models is the class of Tweedie distributions. This class is very significant in statistical modeling as it includes a number of familiar distributions such as Gaussian, Gamma and compound Poisson. A Tweedie distribution has a power parameter p, a mean m and a dispersion parameter 𝜙. The value of the power parameter lies in identifying the corresponding distribution of the Tweedie family. The basic objective of this research work resides in investigating the existence of the implicit estimator of the power parameter of the Tweedie distribution. A necessary and sufficient condition on the mean parameter m, suggesting that the implicit estimator of the power parameter p exists, was established and we provided some asymptotic properties of this estimator.

Statistical Simulation of Shift Force for a Manual Transmission

  • Kim, Joohyung;Park, Sangjoon;Hanlim Song;Chaehong Lim;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.471-480
    • /
    • 2004
  • Statistical simulation approaches are proposed to evaluate the shift feeling for a manual transmission. First, shift force simulator for the manual transmission is developed by considering the dynamic models of the external and internal linkage, synchronizer, and drivetrain. It is found that the shift force by the simulator shows a good correlation with the test results. Using the simulator, two kinds of statistical simulation approaches are proposed and the objective parameters that can be used to evaluate the shift feeling quantitatively are obtained. It is expected that the shift force simulator with the statistical approaches, developed in this study can be used as a useful design tool to evaluate the shift feeling in the initial design stage.