Browse > Article
http://dx.doi.org/10.4134/BKMS.b210590

ON THE EXISTENCE OF THE TWEEDIE POWER PARAMETER IMPLICIT ESTIMATOR  

Ghribi, Abdelaziz (Laboratory of Probability and Statistics Sfax University)
Hassin, Aymen (Laboratory of Probability and Statistics Sfax University)
Masmoudi, Afif (Laboratory of Probability and Statistics Sfax University)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.4, 2022 , pp. 979-991 More about this Journal
Abstract
A special class of exponential dispersion models is the class of Tweedie distributions. This class is very significant in statistical modeling as it includes a number of familiar distributions such as Gaussian, Gamma and compound Poisson. A Tweedie distribution has a power parameter p, a mean m and a dispersion parameter 𝜙. The value of the power parameter lies in identifying the corresponding distribution of the Tweedie family. The basic objective of this research work resides in investigating the existence of the implicit estimator of the power parameter of the Tweedie distribution. A necessary and sufficient condition on the mean parameter m, suggesting that the implicit estimator of the power parameter p exists, was established and we provided some asymptotic properties of this estimator.
Keywords
Tweedie distributions; power parameter; implicit approach; asymptotic normality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. E. Kass and L. Wasserman, The selection of prior distributions by formal rules, J. Am. Stat. Assoc. 91 (1996), no. 435, 1343-1370.   DOI
2 R. Tibshirani, Noninformative priors for one parameter of many, Biometrika 76 (1989), no. 3, 604-608. https://doi.org/10.1093/biomet/76.3.604   DOI
3 G. Letac, Lectures on natural exponential families and their variance functions, Monografias de Matematica, 50, Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, 1992.
4 J.-M. Bernardo, Reference posterior distributions for Bayesian inference, J. Roy. Statist. Soc. Ser. B 41 (1979), no. 2, 113-147.
5 R. W. Butler and A. T. A. Wood, Laplace approximation for Bessel functions of matrix argument, J. Comput. Appl. Math. 155 (2003), no. 2, 359-382.   DOI
6 A. Hassine, A. Ghribi, and A. Masmoudi, Tweedie regression model: a proposed statistical approach for modelling indoor signal path loss, Intern. J. Numer. Modelling, Electronic Networks, Devices and Fields 6 (2017), no. 30, e2243.
7 M. C. K. Tweedie, An index which distinguishes between some important exponential families, in Statistics: applications and new directions (Calcutta, 1981), 579-604, Indian Statist. Inst., Calcutta, 1984.
8 K. Masmoudi and A. Masmoudi, A new class of continuous Bayesian networks, Internat. J. Approx. Reason. 109 (2019), 125-138. https://doi.org/10.1016/j.ijar.2019.03.010   DOI
9 J. Nelder, An alternative view of the splicing data, Appl. Stat. (1994) 469-476.
10 C. P. Robert, The Bayesian Choice, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4757-4314-2   DOI
11 V. M. Zolotarev, One-dimensional stable distributions, translated from the Russian by H. H. McFaden, translation edited by Ben Silver, Translations of Mathematical Monographs, 65, American Mathematical Society, Providence, RI, 1986. https://doi.org/10.1090/mmono/065   DOI
12 B. Jorgensen, Exponential dispersion models, J. Roy. Statist. Soc. Ser. B 49 (1987), no. 2, 127-162.
13 A. Ghribi and A. Masmoudi, A compound Poisson model for learning discrete Bayesian networks, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 6, 1767-1784. https://doi.org/10.1016/S0252-9602(13)60122-8   DOI
14 W. H. Bonat and C. C. Kokonendji, Flexible Tweedie regression models for continuous data, J. Stat. Comput. Simul. 87 (2017), no. 11, 2138-2152. https://doi.org/10.1080/00949655.2017.1318876   DOI
15 L. Bouchaala, A. Masmoudi, F. Gargouri, and A. Rebai, Improving algorithms for structure learning in bayesian networks using a new implicit score, Expert Systems with Applications 37 (2010), no. 7, 5470-5475.   DOI
16 P. K. Dunn and G. K. Smyth, Series evaluation of Tweedie exponential dispersion model densities, Stat. Comput. 15 (2005), no. 4, 267-280. https://doi.org/10.1007/s11222-005-4070-y   DOI
17 P. K. Dunn and G. K. Smyth, Evaluation of Tweedie exponential dispersion model densities by Fourier inversion, Stat. Comput. 18 (2008), no. 1, 73-86. https://doi.org/10.1007/s11222-007-9039-6   DOI
18 A. Hassairi, A. Masmoudi, and C. C. Kokonendji, Implicit distributions and estimation, Comm. Statist. Theory Methods 34 (2005), no. 2, 245-252. https://doi.org/10.1080/03610920509342417   DOI
19 H. B. Hassen, L. Bouchaala, A. Masmoudi, and A. Rebai, Learning parameters and structure of bayesian networks using an implicit framework, SCIYO. COM, 2010.
20 B. Jorgensen, The theory of dispersion models, Monographs on Statistics and Applied Probability, 76, Chapman & Hall, London, 1997.