• Title/Summary/Keyword: statistical estimator

Search Result 798, Processing Time 0.022 seconds

Variance estimation of a double expanded estimator for two-phase sampling

  • Mingue Park
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.403-410
    • /
    • 2023
  • Two-Phase sampling, which was first introduced by Neyman (1938), has various applications in different forms. Variance estimation for two-phase sampling has been an important research topic because conventional variance estimators used in most softwares are not working. In this paper, we considered a variance estimation for two-phase sampling in which stratified two-stage cluster sampling designs are used in both phases. By defining a conditionally unbiased estimator of an approximate variance estimator, which is calculable when all elements in the first phase sample are observed, we propose an explicit form of variance estimator of the double expanded estimator for a two-phase sample. A small simulation study shows the proposed variance estimator has a negligible bias with small variance. The suggested variance estimator is also applicable to other linear estimators of the population total or mean if appropriate residuals are defined.

Multivariate analysis of longitudinal surveys for population median

  • Priyanka, Kumari;Mittal, Richa
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.255-269
    • /
    • 2017
  • This article explores the analysis of longitudinal surveys in which same units are investigated on several occasions. Multivariate exponential ratio type estimator has been proposed for the estimation of the finite population median at the current occasion in two occasion longitudinal surveys. Information on several additional auxiliary variables, which are stable over time and readily available on both the occasions, has been utilized. Properties of the proposed multivariate estimator, including the optimum replacement strategy, are presented. The proposed multivariate estimator is compared with the sample median estimator when there is no matching from a previous occasion and with the exponential ratio type estimator in successive sampling when information is available on only one additional auxiliary variable. The merits of the proposed estimator are justified by empirical interpretations and validated by a simulation study with the help of some natural populations.

Negative Exponential Disparity Based Robust Estimates of Ordered Means in Normal Models

  • Bhattacharya, Bhaskar;Sarkar, Sahadeb;Jeong, Dong-Bin
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.371-383
    • /
    • 2000
  • Lindsay (1994) and Basu et al (1997) show that another density-based distance called the negative exponential disparity (NED) is an excellent competitor to the Hellinger distance (HD) in generating an asymptotically fully efficient and robust estimator. Bhattacharya and Basu (1996) consider estimation of the locations of several normal populations when an order relation between them is known to be true. They empirically show that the robust HD based weighted likelihood estimators compare favorably with the M-estimators based on Huber's $\psi$ function, the Gastworth estimator, and the trimmed mean estimator. In this paper we investigate the performance of the weighted likelihood estimator based on the NED as a robust alternative relative to that based on the HD. The NED based estimator is found to be quite competitive in the settings considered by Bhattacharya and Basu.

  • PDF

Generalized Ratio-Cum-Product Type Estimator of Finite Population Mean in Double Sampling for Stratification

  • Tailor, Rajesh;Lone, Hilal A.;Pandey, Rajiv
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.255-264
    • /
    • 2015
  • This paper addressed the problem of estimation of finite population mean in double sampling for stratification. This paper proposed a generalized ratio-cum-product type estimator of population mean. The bias and mean square error of the proposed estimator has been obtained upto the first degree of approximation. A particular member of the proposed generalized estimator was identified and studied from a comparison point of view. It is observed that the identified particular estimator is more efficient than usual unbiased estimator and Ige and Tripathi (1987) estimators. An empirical study was conducted in support of the theoretical findings.

Minimum Disparity Estimation for Normal Models: Small Sample Efficiency

  • Cho M. J.;Hong C. S.;Jeong D. B.
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.149-167
    • /
    • 2005
  • The minimum disparity estimators introduced by Lindsay and Basu (1994) are studied empirically. An extensive simulation in this paper provides a location estimate of the small sample and supplies empirical evidence of the estimator performance for the univariate contaminated normal model. Empirical results show that the minimum generalized negative exponential disparity estimator (MGNEDE) obtains high efficiency for small sample sizes and dominates the maximum likelihood estimator (MLE) and the minimum blended weight Hellinger distance estimator (MBWHDE) with respect to efficiency at the contaminated model.

The Weight Function in the Bounded Influence Regression Quantile Estimator for the AR(1) Model with Additive Outliers

  • Jung Byoung Cheol;Han Sang Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.169-179
    • /
    • 2005
  • In this study, we investigate the effects of the weight function in the bounded influence regression quantile (BIRQ) estimator for the AR(l) model with additive outliers. In order to down-weight the outliers of X -axis, the Mallows' (1973) weight function has been commonly used in the BIRQ estimator. However, in our Monte Carlo study, the BIRQ estimator using the Tukey's bisquare weight function shows less MSE and bias than that of using the Mallows' weight function or Huber's weight function. Thus, the use of the Tukey's weight function is recommended in the BIRQ estimator for our model.

SOME POINT ESTIMATES FOR THE SHAPE PARAMETERS OF EXPONENTIATED-WEIBULL FAMILY

  • Singh Umesh;Gupta Pramod K.;Upadhyay S.K.
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.63-77
    • /
    • 2006
  • Maximum product of spacings estimator is proposed in this paper as a competent alternative of maximum likelihood estimator for the parameters of exponentiated-Weibull distribution, which does work even when the maximum likelihood estimator does not exist. In addition, a Bayes type estimator known as generalized maximum likelihood estimator is also obtained for both of the shape parameters of the aforesaid distribution. Though, the closed form solutions for these proposed estimators do not exist yet these can be obtained by simple appropriate numerical techniques. The relative performances of estimators are compared on the basis of their relative risk efficiencies obtained under symmetric and asymmetric losses. An example based on simulated data is considered for illustration.

A Robust Wald-Ttype Test in Linear Regression

  • Nam, Ho-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.507-520
    • /
    • 1997
  • In this paper we propose a robust Wald-type test which is based on an efficient Mallows-type one-step GM-estimator. The proposed estimator based on the weight function of Song, Park and Nam (1996) has a bounded influence function and a high breakdown point. Under some regularity conditions, we compute the finite-sample breakdown point, and drive asymptotic normality of the proposed estimator. The level and power breakdown points, influence function and asymptotic distribution of the proposed test statistic are main points of this paper. To compare the performance of the proposed test with other tests, we perform some Monte Carlo simulations.

  • PDF

A Suboptimal Estimator Design for Discrete Nonlinear Systems (이산 비선형시스템에서의 준최적추정자)

  • 이연석;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.929-936
    • /
    • 1991
  • An estimator for a discrete nonlinear system is derived in the sense of minimum mean square error. An optimal estimator for nonlinear system is very difficult to find and it will be infinite dimensional even if it is found. It has been known that the statistical linearization technique makes it possible to obtain a finite dimensional estimator. In this paper, the procedure of its derivation using the statistical linearization technique that gives an exact mean and variance information is introduced in the sense of minimum mean square error. The derived estimator cannot be clainmed to be globally optimal estimator because it uses the Gaussian assumption to the non-Gaussian distributed nonlinear output. However, the proposed filter exhibits a better performance compared to extended Kalman filter. Simulation results of a simple example present the improvement of the proposed filter in convergent property over the extended Kalman filter.

  • PDF

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.