• Title/Summary/Keyword: statistical estimate

Search Result 1,682, Processing Time 0.032 seconds

Statistical Analysis of Ion Components in Rainwater (濕性大氣成分에 對한 統計的解析)

  • 李敏熙;韓義正;元良洙;辛燦基
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.41-54
    • /
    • 1986
  • Methods used for averaging PH's of rainwater and site representation have been studied, Statistical analysis was attempted regarding effects of ionic components on PH's utilizing 847 data altogether obtained in two years, 1984 and 1985. The outcome of the study may be assumarized as follows: 1. Methods for Averaging PH Volume weighted method is considered to be acceptable providing that precipitation is measured at the same time when the samples are taken. Without precipitation data a simple averaging method should be the next choice. 2. Site Representation A statistical method used for optimizing a monitoring newtork was applied using the data collected. Because of a limited number of data, no discernible conclusion can be reached suggesting that the method can serve as a good guide when the data base becomes more reliable. 3. A good correlation appears to exist betwen conductivities and ionic components in rainwater. It would, therefore, be possible to certain extend to estimate ionic concentrations from conductivity measurements by correlation equations. 4. The acidity of rainwater is effected by $SO_4^{2-}, NO_3^-, Cl^- and NH_4^+ with SO_4^{2-}$ being the most significant as demonstrated by standardized regression analysis.

  • PDF

Statistical Analysis of Simulation Output Ratios (시뮬레이션 출력비 추정량의 통계적 분석)

  • 홍윤기
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 1994
  • A statistical procedure is developed to estimate the relative difference between two parameters each obtained from either true model or approximate model. Double sample procedure is applied to find the additional number of simulation runs satisfying the preassigned absolute precision of the confidence interval. Two types of parameters, mean and standard deviation, are considered as the performance measures and tried to show the validity of the model by examining both queues and inventory systems. In each system it is assumed that there are three distinct means and their own standard deviations and they form the simultaneous confidence intervals but with control in the sense that the absolute precision for each confidence interval is bounded on the limits with preassigned confidence level. The results of this study may contribute to some situations, for instance, first, we need a statistical method to compare the effectiveness between two alternatives, second, we find the adquate number of replications with any level of absolute precision to avoid the unrealistic cost of running simulation models, third, we are interested in analyzing the standard deviation of the output measure, ..., etc.

  • PDF

A Study On Identification Of A Linear Discrete System When The Statistical Characteristics Of Observation Noise Are Unknown (측정잡음의 통계적 성질이 미지인 경우의 선형 이산치형계통의 동정에 관한 연구)

  • 하주식;박장춘
    • 전기의세계
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 1973
  • In the view point of practical engineering the identification problem may be considered as a problem to determine the optimal model in the sense of minimizing a given criterion function using the input-output records of the plant. In the system identification the statistical approach has been known to be very effective when the topological structure of the system and the statistical characteristics of the observation noises are known a priori. But in the practical situation there are many cases when the inforhation about the observation noises or the system noises are not available a priori. Here, the authors propose a new identification method which can be used effectively even in the cases when the variances of observation noises are unknown a priori. In the method, the identification of unknown parameters of a linear diserete system is achieved by minimizing the improved quadratic criterion function which is composed of the term of square equation errors and the term to eliminate the affection of observation noises. The method also gives the estimate of noise variance. Numerical computations for several examples show that the proposed procedure gives satisfactory results even when the short time observation data are provided.

  • PDF

Inference Based on Generalized Doubly Type-II Hybrid Censored Sample from a Half Logistic Distribution

  • Lee, Kyeong-Jun;Park, Chan-Keun;Cho, Young-Seuk
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.645-655
    • /
    • 2011
  • Chandrasekar et al. (2004) introduced a generalized Type-II hybrid censoring. In this paper, we propose generalized doubly Type-II hybrid censoring. In addition, this paper presents the statistical inference on the scale parameter for the half logistic distribution when samples are generalized doubly Type-II hybrid censoring. The approximate maximum likelihood(AMLE) method is developed to estimate the unknown parameter. The scale parameter is estimated by the AMLE method using two di erent Taylor series expansion types. We compar the AMLEs in the sense of the mean square error(MSE). The simulation procedure is repeated 10,000 times for the sample size n = 20; 30; 40 and various censored samples. The $AMLE_I$ is better than $AMLE_{II}$ in the sense of the MSE.

Interval Estimation of the Difference of two Population Proportions using Pooled Estimator

  • Hong, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.389-399
    • /
    • 2002
  • In order to examine whether the difference between two point estimates of population proportions is statistically significant, data analysts use two techniques. The first is to explore the overlap between two associated confidence intervals. Second method is to test the significance which is introduced at most statistical textbooks under the common assumptions of consistency, asymptotic normality, and asymptotic independence of the estimates. Under the null hypothesis which is two population proportions are equal, the pooled estimator of population proportion is preferred as a point estimator since two independent random samples are considered to be collected from one population. Hence as an alternative method, we could obtain another confidence interval of the difference of the population proportions with using the pooled estimate. We conclude that, among three methods, the overlapped method is under-estimated, and the difference of the population proportions method is over-estimated on the basis of the proposed method.

Weight Reduction Method for Outlier in Survey Sampling

  • Kim Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2006
  • Outliers in survey are a perennial problem for applied survey statisticians to estimate the total or mean of population. The influence of outliers is more increasing as they have large weights in survey sampling. Many techniques have been studied to lower the impact of outliers on sample survey estimates. Outliers can be downweighted by winsorization or reducing the weight of outliers. The weight reduction is more reasonable than replacing one outlier by one value of non-outliers, because it has at least one unit. In this paper, we suggest the square root transformation of weight as the weight reduction method. We show this method is efficient with real data, and it's also easy to apply in practical affairs.

Calibration by Median Regression

  • Jinsan Yang;Lee, Seung-Ho
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.265-277
    • /
    • 1999
  • Classical and inverse estimation methods are two well known methods in statistical calibration problems. When there are outliers, both methods have large MSE's and could not estimate the input value correctly. We suggest median calibration estimation based on the LD-statistics. To investigate the robust performances, the influence function of the median calibration estimator is calculated and compared with other methods. When there are outliers in the response variables, the influence function is found to be bounded. In simulation studies, the MSE's for each calibration methods are compared. The estimated inputs as well as the performance of the influence functions are calculated.

  • PDF

Statistical Analysis of K-League Data using Poisson Model

  • Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.775-783
    • /
    • 2012
  • Several statistical models for bivariate poisson data are suggested and used to analyze 2011 K-league data. Our interest is composed of two purposes: The first purpose is to exploit potential attacking and defensive abilities of each team. Particular, a bivariate poisson model with diagonal inflation is incorporated for the estimation of draws. A joint model is applied to estimate an association between poisson distribution and probability of draw. The second one is to investigate causes on scoring time of goals and a regression technique of recurrent event data is applied. Some related future works are suggested.

Empirical variogram for achieving the best valid variogram

  • Mahdi, Esam;Abuzaid, Ali H.;Atta, Abdu M.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.547-568
    • /
    • 2020
  • Modeling the statistical autocorrelations in spatial data is often achieved through the estimation of the variograms, where the selection of the appropriate valid variogram model, especially for small samples, is crucial for achieving precise spatial prediction results from kriging interpolations. To estimate such a variogram, we traditionally start by computing the empirical variogram (traditional Matheron or robust Cressie-Hawkins or kernel-based nonparametric approaches). In this article, we conduct numerical studies comparing the performance of these empirical variograms. In most situations, the nonparametric empirical variable nearest-neighbor (VNN) showed better performance than its competitors (Matheron, Cressie-Hawkins, and Nadaraya-Watson). The analysis of the spatial groundwater dataset used in this article suggests that the wave variogram model, with hole effect structure, fitted to the empirical VNN variogram is the most appropriate choice. This selected variogram is used with the ordinary kriging model to produce the predicted pollution map of the nitrate concentrations in groundwater dataset.

A Logistic Regression Analysis of Two-Way Binary Attribute Data (이원 이항 계수치 자료의 로지스틱 회귀 분석)

  • Ahn, Hae-Il
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.118-128
    • /
    • 2012
  • An attempt is given to the problem of analyzing the two-way binary attribute data using the logistic regression model in order to find a sound statistical methodology. It is demonstrated that the analysis of variance (ANOVA) may not be good enough, especially for the case that the proportion is very low or high. The logistic transformation of proportion data could be a help, but not sound in the statistical sense. Meanwhile, the adoption of generalized least squares (GLS) method entails much to estimate the variance-covariance matrix. On the other hand, the logistic regression methodology provides sound statistical means in estimating related confidence intervals and testing the significance of model parameters. Based on simulated data, the efficiencies of estimates are ensured with a view to demonstrate the usefulness of the methodology.