• Title/Summary/Keyword: statistical characterization

Search Result 205, Processing Time 0.023 seconds

A Statistical Approach to Paired versus Group Comparisons (쌍체비교와 독립비교에 대한 통계적인 고찰)

  • Kim Tae-Min;Kim Sang-Boo
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.231-240
    • /
    • 2006
  • It is well understood that a paired comparison (paired t test) provides better precision than a group comparison (two-sample t test), when the pairing is effective (the variation within a pair is small). However, when the variation among the pairs is sufficiently small, the group comparison is likely to yield a better result. To get a statistical explanation of this, we examine the two methods through an analogy to one-way and two-way analysis of variance. We introduce a new measure, R statistic, which is the ratio of their confidence interval lengths, as a quantitative criterion for comparing the two methods. The distribution of the Rf statistic is described by t and F distribution functions. Through this characterization, we show that the paired comparison can be better than group comparison when the variation among the pairs is statistically significantly large.

Parametric Shape Modeling of Femurs Using Statistical Shape Analysis (통계적 형상 분석을 이용한 대퇴골의 파라메트릭 형상 모델링)

  • Choi, Myung Hwan;Koo, Bon Yeol;Chae, Je Wook;Kim, Jay Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1139-1145
    • /
    • 2014
  • Creation of a human skeleton model and characterization of the variation in the bone shape are fundamentally important in many applications of biomechanics. In this paper, we present a parametric shape modeling method for femurs that is based on extracting the main parameter of variations of the femur shape from a 3D model database by using statistical shape analysis. For this shape analysis, principal component analysis (PCA) is used. Application of the PCA to 3D data requires bringing all the models in correspondence to each other. For this reason, anatomical landmarks are used for guiding the deformation of the template model to fit the 3D model data. After subsequent application of PCA to a set of femur models, we calculate the correlation between the dominant components of shape variability for a target population and the anatomical parameters of the femur shape. Finally, we provide tools for visualizing and creating the femur shape using the main parameter of femur shape variation.

Assessing Infinite Failure Software Reliability Model Using SPC (Statistical Process Control) (통계적 공정관리(SPC)를 이용한 무한고장 소프트웨어 신뢰성 모형에 대한 접근방법 연구)

  • Kim, Hee Cheul;Shin, Hyun Cheul
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical Process Control (SPC) can monitor the forecasting of software failure and there by contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of log Poission, log-linear and Parto distribution.

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on polynomial hazard function (다항 위험함수에 근거한 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.345-353
    • /
    • 2015
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do parameter inference for software reliability models based on finite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision to market software, the conditional failure rate is an important variables. In this case, finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outlier, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, proposed a control mechanism based on NHPP using mean value function of polynomial hazard function.

Well Log Analysis using Intelligent Reservoir Characterization (지능형 저류층 특성화 기법을 이용한 물리검층 자료 해석)

  • Lim Song-Se
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Petroleum reservoir characterization is a process for quantitatively describing various reservoir properties in spatial variability using all the available field data. Porosity and permeability are the two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. These properties have a significant impact on petroleum fields operations and reservoir management. In un-cored intervals and well of heterogeneous formation, porosity and permeability estimation from conventional well logs has a difficult and complex problem to solve by conventional statistical methods. This paper suggests an intelligent technique using fuzzy logic and neural network to determine reservoir properties from well logs. Fuzzy curve analysis based on fuzzy logics is used for selecting the best related well logs with core porosity and permeability data. Neural network is used as a nonlinear regression method to develop transformation between the selected well logs and core analysis data. The intelligent technique is demonstrated with an application to the well data in offshore Korea. The results show that this technique can make more accurate and reliable properties estimation compared with previously used methods. The intelligent technique can be utilized a powerful tool for reservoir characterization from well logs in oil and natural gas development projects.

Secret Key Generation Using Reciprocity in Ultra-wideband Outdoor Wireless Channels

  • Huang, Jing Jing;Jiang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.524-539
    • /
    • 2014
  • To investigate schemes of secret key generation from Ultra-wideband (UWB) channel, we study a statistical characterization of UWB outdoor channel for a campus playground scenario based on extensive measurements. Moreover, an efficient secret key generation mechanism exploiting multipath relative delay is developed, and verification of this algorithm is conducted in UWB Line-of-sight (LOS) outdoor channels. For the first time, we compare key-mismatch probability of UWB indoor and outdoor environments. Simulation results demonstrate that the number of multipath proportionally affects key generation rate and key-mismatch probability. In comparison to the conventional method using received signal strength (RSS) as a common random source, our mechanism achieves better performance in terms of common secret bit generation. Simultaneously, security analysis indicates that the proposed scheme can still guarantee security even in the sparse outdoor physical environment free of many reflectors.

Real-time Pulse Radar Signal Processing Algorithm for Vehicle Detection (실시간 차량 검지를 위한 펄스 레이더 신호처리 알고리즘)

  • Ryu Suk-Kyung;Woo Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.353-357
    • /
    • 2006
  • The vehicle detection method using pulse radar has the advantage of maintenance in comparison with loop detection method. We propose the pulse radar signal processing algorithm in which we devide the trace. data from pulse radar into segments by using SSC concept, and then construct the sectors in accordance with period and amplitude of segments, and finally decide the vehicle detection probability by applying the SSC parameters of each sectors into the discriminant function. We also improve the signal processing time by reducing the quantities of processing data and processing routines.

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

Preparation of $Mn_{0.5}Zn_{0.5}$ Ferrite Powder by Coprecipition Process (공침법에 의한 $Mn_{0.5}Zn_{0.5}$ Ferrite 분말제조연구)

  • 엄태형;서동수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.33-36
    • /
    • 1991
  • For its outstanding magnetic property, preparations of MnZn ferrite were studied with various method. In this study, MnZn ferrite powders were prepared from ammonium oxalate and mixed metal sulfate by the controlled coprecipitation process. Considering to low dissolved each metal ion, high production yield and particle size, the established optimum reaction conditon by the statistical analysis of each results are that reaction temperature is $25^{\circ}C$, concentration of metal sulfate is 0.3M, molar ratio of ammonium oxalate/metal sulfate is 1.1:1. The effective experimental factor and characterization of the precipitated powder at optimum condition were studied.

GIS based Non-Point Source Pollution Assessment

  • Sadeghi-Niaraki, Abolghasem;Kim, Kye-Hyun;Lee, Chol-Young
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.437-440
    • /
    • 2008
  • In recent years, pollution load calculation has become a topic for research that resulted in the development of numerous GIS modeling methods. The existing pollution method for nonpoint source (NPS) can not be indentified and calculated the amount of the pollution precisely. This research shows that the association of typical pollutant concentrations with land uses in a watershed can provide a reasonably accurate characterization of nonpoint source pollution in the watershed using Expected Mean Concentrations (EMC). The GIS based pollution assessment method is performed for three pollutant constituents: BOD, TN, and TP. First, the runoff grid by means of the precipitation grid and runoff coefficient is estimated. Then, the NPS pollution loads are calculated by grid based method. Finally, the final outputs are evaluated by statistical technique. The results illustrate the merits of the approach. This model verified that GIS based method of estimating spatially distributed NPS pollution loads can lead to more accurate representation of the real world.

  • PDF