• Title/Summary/Keyword: station

Search Result 14,049, Processing Time 0.056 seconds

A Maritime DGPS Reference Station Configuration Proposal for Operation Improvement

  • Choi, Yong Kwon;Son, Seok Bo;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.187-193
    • /
    • 2015
  • A maritime Differential Global Positioning System (DGPS) reference station broadcasts correction information to users having a DGPS receiver so that the navigation performance can be improved. A maritime DGPS reference station consists of a reference station (RS) that generates and broadcasts correction information, an integrity monitor (IM) that monitors the integrity of correction information, and a control station (CS) that controls them. A maritime DGPS reference station is continuously operated for 24 hours, and thus improvement in the ease of operation is a major element that can improve the performance of the system. In this study, a configuration of a maritime DGPS reference station that can improve the ease of operation and a relevant protocol were proposed, and an example of the implementation of the proposed system was presented.

Design of Ground Station System for CubeSat STEP Cube Lab. (큐브위성 STEP Cube Lab.의 지상국 시스템 설계)

  • Jeon, Younghyeon;Chae, Bonggeon;Jeong, Hyeonmo;Jeon, Seongyong;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.34-39
    • /
    • 2012
  • CubeSats classified as pico-class satellite require a ground station to track the satellite, transmit a command, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. For this, ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

An Economic Analysis of the Hydrogen Station Enterprise Considering Dynamic Utilization (동적 이용률을 고려한 수소충전소 사업의 경제성 분석)

  • GIM, BONGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2017
  • This paper deals with the after-tax economic feasibility analysis of the hydrogen fueling station considering dynamic utilization. We selected an off-site hydrogen station in which the hydrogen is supplied by a central by-product hydrogen plant as a case study. Also, we made some sensitivity analysis by changing input factors such as the discount rate, the hydrogen station construction cost, the hydrogen demand and the hydrogen sale price. As a result, the hydrogen station will not be economical in 2020 due to the relatively high price of the hydrogen station construction cost and the low price of hydrogen sale price. In order to realize the economic feasibility of the hydrogen station in the early stage of the hydrogen economy, the subsidies on the annual operating cost as well as the construction cost are needed.

Quality Monitoring Method Analysis for GNSS Ground Station Monitoring and Control Subsystem (위성항법 지상국 감시제어시스템 품질 감시 기법 분석)

  • Jeong, Seong-Kyun;Lee, Sang-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • GNSS(Global Navigation Satellite System) Ground Station performs GNSS signal acquisition and processing. This system generates error correction information and distributes them to GNSS users. GNSS Ground Station consists of sensor station which contains receiver and meteorological sensor, monitoring and control subsystem which monitors and controls sensor station, control center which generates error correction information, and uplink station which transmits correction information to navigation satellites. Monitoring and control subsystem acquires and processes navigation data from sensor station. The processed data is transmitted to GNSS control center. Monitoring and control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation determination module, independent quality monitoring module, and system maintenance and management module. The independent quality monitoring module inspects navigation signal, data, and measurement. This paper introduces independent quality monitoring and performs the analysis using measurement data.