• 제목/요약/키워드: static-dynamic coupled loading

검색결과 10건 처리시간 0.025초

Experimental investigation on bolted rock mass under static-dynamic coupled loading

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Shi, Xinshuai;Hu, Shanchao
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.99-111
    • /
    • 2022
  • Instability of bolted rock mass has been a major hazard in the underground coal mining industry for decades. Developing effective support guidelines requires understanding of complex bolted rock mass failure mechanisms. In this study, the dynamic failure behavior, mechanical behavior, and energy evolution of a laboratory-scale bolted specimens is studied by conducting laboratory static-dynamic coupled loading tests. The results showed that: (1) Under static-dynamic coupled loading, the stress-strain curve of the bolted rock mass has a significant impact velocity (strain rate) correlation, and the stress-strain curve shows rebound characteristics after the peak; (2) There is a critical strain rate in a rock mass under static-dynamic coupled loading, and it decreases exponentially with increasing pre-static load level. Bolting can significantly improve the critical strain rate of a rock mass; (3) Compared with a no-bolt rock mass, the dissipation energy ratio of the bolted rock mass decreases exponentially with increasing pre-static load level, the ultimate dynamic impact energy and dissipation energy of the bolted rock mass increase significantly, and the increasing index of the ratio of dissipation energy increases linearly with the pre-static load; (4) Based on laboratory testing and on-site microseismic and stress monitoring, a design method is proposed for a roadway bolt support against dynamic load disturbance, which provides guidance for the design of deep underground roadway anchorage supports. The research results provide new ideas for explaining the failure behavior of anchorage supports and adopting reasonable design and construction practices.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach

  • Hajdo, Emina;Mejia-Nava, Rosa Adela;Imamovic, Ismar;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.79-102
    • /
    • 2021
  • In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • 제2권3호
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.

10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구 (Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade)

  • 김수현;신형기;방형준
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.369-374
    • /
    • 2016
  • 본 연구에서는 굽힘-비틀림 커플링(bend-twist coupled, BTC) 설계개념을 적용한 10 MW급 복합재 풍력 블레이드의 구조 최적 설계를 수행하였다. BTC 설계개념은 동적 하중 상황에서 블레이드의 굽힘과 비틀림 거동 사이의 연동을 유도하여, 단면 받음각 변화에 의한 수동적인 적응 하중저감이 가능하다. 인자연구를 통해 최적의 BTC 설계인자를 추출하여 블레이드 구조설계에 적용하였다. BTC 개념이 동적 하중 감소에 미치는 영향을 가늠하기 위해 블레이드 루트 부에서의 피로등가하중을 계산한 결과, BTC 개념이 적용된 블레이드를 적용한 경우 피로등가하중이 2-3% 정도 감소하는 것을 확인할 수 있었다. BTC 효과를 시험적으로 검증하기 위해 1:29 비율의 블레이드 stiffener 축소모델을 제작하였으며, 정하중 시험을 통해 처짐 거동 시 끝단에서의 비틀림을 측정하였다.

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Design of a piezovibrocone and calibration chamber

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.177-190
    • /
    • 2010
  • This paper presents the details of indigenous development of the piezovibrocone and calibration chamber. The developed cone has a cylindrical friction sleeve of $150cm^2$ surface area, capped with a $60^{\circ}$ apex angle conical tip of $15cm^2$ cross sectional area. It has a hydraulic shaker, coupled to the cone penetrometer with a linear displacement unit. The hydraulic shaker can produce cyclic load in different types of wave forms (sine, Hover sine, triangular, rectangular and external wave) at a range of frequency 1-10 Hz with maximum amplitude of 10 cm. The piezovibrocone can be driven at the standard rate of 2 cm/sec using a loading unit of 10 ton capacity. The calibration chamber is of size $2m{\times}2m{\times}2m$. The sides of the chamber and the top as well as the bottom portions are rigid. It has a provision to apply confining pressure (to a maximum value of $4kg/cm^2$) through the flexible rubber membrane inlined with the side walls of the calibration chamber. The preliminary static as well as dynamic cone penetration tests have been done sand in the calibration chamber. From the experimental results, an attempt has been made to classify the soil based on friction ratio ($f_R$) and the cone tip resistance ($q_c$).

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.

UBCSAND모델을 이용한 사면의 동적거동해석 (Numerical Modeling of Sloping Ground under Earthquake Loading Using UBCSAND Model)

  • 박성식;김영수;김희중
    • 한국지반공학회논문집
    • /
    • 제22권4호
    • /
    • pp.61-71
    • /
    • 2006
  • 본 논문에서는 유효응력모델을 이용하여 포화된 사면의 동적거동에 관한 연구를 수행하였다. 수치해석에는 저자가 개발한 연성 유효응력모델인 UBSSAND모델을 이용하였으며, 이 모델은 초기전단응력이 수평면에 작용하는 경우와 작용하지 않는 경우를 포함한 반복 직접단순전단시험 자료를 이용하여 검증하였다. 검증된 모델은 느슨한 Fraser River 모래로 성형된 사면을 가진 원심모형모델의 동적거동을 예측하였다. 예측된 과잉간극수압, 가속도 및 변위를 계측치와 서로 비교하였으며, 예측치와 계측치는 비교적 서로 잘 일치하였다. 전단응력도의 응력전환형태는 초기전단응력과 반복전단응력의 크기에 따라 달라지며, 이는 지진시 포화된 사면의 안정해석에 아주 중요한 역할을 하고 있음을 알 수 있었다. 전단응력도의 응력전환이 발생하지 않을 경우에 사면근처의 모래는 낮은 유효응력 구속압과 그에 따른 팽창성으로(부의 과잉간극수압발생) 유효응력이 증가하여, 동적하중 하의 사면의 변위를 저지하였다. 이와 같은 유효응력모델은 액상화를 고려한 지반구조물의 내진해석에 유용하게 사용될 수 있다.