• Title/Summary/Keyword: static tests

Search Result 1,512, Processing Time 0.029 seconds

Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles (헬리컬 파일의 지지력 산정을 위한 양방향 재하시험의 적용성 평가)

  • Lee, Dongseop;Na, Kyunguk;Lee, Wonje;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.77-85
    • /
    • 2014
  • The helical pile has become popular with some constructional advantages because relatively compact equipment is needed for installing helical piles. However, field loading tests for estimating the bearing capacity of helical piles have drawbacks that the required dead load should be as much as the operation load, and reaction piles or anchors are required. In this paper, the bi-directional load test without necessity of reaction piles and loading frames was applied to the helical pile, and the load-settlement curves of the helical piles were measured. The bi-directional load test was performed in two separate stages with the aid of a special hydraulic cylinder whose diameter is equal to that of the pile shaft. In the first stage, the hydraulic cylinder is assembled immediately above the bottom helix plate, and the end bearing capacity of the helical pile is measured. In the second stage, the hydraulic cylinder is assembled above the top helix plate, and the skin friction of the helical pile is measured. The pile loading-test program was carried out for the two different helical piles with the shaft diameter of 89 mm and 114 mm, respectively. However, the configuration of helix plates is identical with three helix plates of 450-, 350-, 200- mm diameter. Results of the bi-directional load test were verified by the conventional static pile loading test. As a result, the bearing capacity estimated by the bi-directional load test is in good agreement with the result of the conventional pile loading test.

Behavior of RC Beam Strengthened with Advanced Lifting Hole Anchorage System (개선된 인양홀을 이용한 정착장치로 보강된 RC 보의 거동)

  • Oh, Min-Ho;Kim, Tae-Wan;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In order to strengthen RC structures, various strengthening methods have been used. Particularly, external tendon strengthening method is very popular method to strengthen damaged structures in terms of efficiency, ease, economics. In this study, improved anchorage elements using the lifting hole were proposed to strengthen PSC or RC girder without any damage. Two types of anchorage elements were proposed and these elements were applied on six RC beams. Also, three types of existing anchorage elements were applied on three RC beams. Otherwise, any anchorage element was not applied on one RC beam to used as a control beam. To analyse behavior of these elements, static load tests were carried out. Test variables were anchorage shapes, prestressing level on the steel bar and tendon profiles. Deflections, strains and modes of failure were recorded to examine the strengthening effects of the beams. Ductility index and tendon stress were analyzed by comparing cracking load, yielding load and ultimate load. As a result, proposed anchorage elements using lifting hole were superior to existing anchorage elements in terms of strengthening effect and furthermore, they showed ductile behavior based on energy method.

Experimental Study on Applying a Transition Track System to Improve Track Serviceability in Railway Bridge Deck Ends (철도교량 단부 궤도의 사용성 향상을 위한 횡단궤도시스템 적용에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.207-216
    • /
    • 2013
  • The components of concrete track (rail and rail fastening system) in railway bridge deck ends are damaged and deteriorated by track-bridge interaction forces such as uplift forces and compression forces owing to their structural flexural characteristics (bridge end rotation). This had led to demand for alternatives to improve structural safety and serviceability. In this study, the authors aim to develop a transition track to enhance the long term workability and durability of concrete track components in railway bridge deck ends and thereby improve the performance of concrete track. A time-history analysis and a three-dimensional finite element method analysis were performed to consider the train speed and the effect of multiple train loads and the results were compared with the performance requirements and German standard for transition track. Furthermore, two specimens, a normal concrete track and a transition track, were fabricated to evaluate the effects of application of the developed transition track, and static tests were conducted. From the results, the track-bridge interaction force acting on the track components (rail displacement, rail stress, and clip stress) of the railway bridge deck end were significantly reduced with use of the developed transition track compared with the non-transition track specimen.

Synthesis of Saccharide Nonionic Biosurfactants from Coconut Oil and Characterization of Their Interfacial Properties (코코넛 오일로부터 유래된 당계 비이온 계면활성제 합성 및 계면 특성 연구)

  • Jo, SeonHui;Lee, YeJin;Park, KiHo;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.435-444
    • /
    • 2019
  • In this study, two types of nonionic saccharide biosurfactants, GP-6 and GP-7, were prepared from coconut oil and the structure of resulting products was investigated by FT-IR, $^1H-NMR$ and $^{13}C-NMR$ spectrophotometer. The interfacial properties of GP-6 and GP-7 were found to be excellent from interfacial property measurements such as critical micelle concentration, static and dynamic surface tensions, interfacial tension, emulsification power, wetting property and foam stability. Detergency test evaluated by using a Terg-o-tometer showed moderately good detergency compared to that of conventional surfactants used in detergent formulations. Biodegradability, acute oral toxicity, acute dermal irritation and acute eye irritation tests revealed that both surfactants possess excellent mildness and superior environmental compatibility indicating the potential applicability to detergent products formulations. In particular, GP-6 can be considered as a strong candidate in detergent formulations since it is more surface active, mild and readily biodegradable than GP-7.

Design and Strength Analysis of a Mast and Mounting Part of Dummy Gun for Multi-Mission Unmanned Surface Vehicle (복합임무 무인수상정의 마스트 및 특수임무장비 장착부 설계 및 강도해석)

  • Son, Juwon;Kim, Donghee;Choi, Byungwoong;Lee, Youngjin
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.51-59
    • /
    • 2018
  • The Multi-Mission Unmanned Surface Vehicle(MMUSV), which is manufactured using glass Fiber Reinforced Plastic(FRP) material, is designed to perform a surveillance and reconnaissance on the sea. Various navigation sensors, such as RADAR, RIDAR, camera, are mounted on a mast to perform an autonomous navigation. And a dummy gun is mounted on the deck of the MMUSV for a target tracking and disposal. It is necessary to analyze a strength for structures mounted on the deck because the MMUSV performs missions under a severe sea state. In this paper, a strength analysis of the mast structure is performed on static loads and lateral external loads to verify an adequacy of the designed mast through a series of simulations. Based on the results of captive model tests, a strength analysis for a heave motion of the mast structure is conducted using a simulation tool. Also a simulation and fatigue test for a mounting part between the MMUSV and the dummy gun are performed using a specimen. The simulation and test results are represented that a structure of the mast and mounting part of the dummy gun are appropriately designed.he impact amount are performed through simulation and experiments.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses

  • Arcila, Laura Viviana Calvache;Ramos, Nathalia de Carvalho;Campos, Tiago Moreira Bastos;Dapieve, Kiara Serafini;Valandro, Luiz Felipe;de Melo, Renata Marques;Bottino, Marco Antonio
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.385-395
    • /
    • 2021
  • PURPOSE. To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS. Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS. All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION. Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.

Investigation of Seismic Response for Deep Temporary Excavation Retaining Wall Using Dynamic Centrifuge Test (동적원심모형실험을 통한 대심도 가설 흙막이 벽체 지진 시 거동 연구)

  • Yun, Jong Seok;Han, Jin-Tae;Kim, Jong-Kwan;Kim, Dongchan;Kim, Dookie;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.119-135
    • /
    • 2022
  • This paper used dynamic centrifuge tests to examine the seismic response for a deep temporary retaining wall with four input motions of 100, 1,000, and 2,400 years of return periods. The centrifuge model was designed based on an actual deep excavation design with a 50 m maximum excavation depth. The model backfill was prepared with dry silica sand at a relative density of 55%, and the retaining wall was modeled as a 24.8 m height diaphragm wall supported by struts. Acceleration response was amplified at the backfill surface, top of the wall, and near bedrock. However, in the middle of the model, input motion was de-amplified. The member forces of the wall and strut induced by the seismic load, which excited, were compared with the member force at rest condition. The wall's maximum negative and positive moments were increased to 36% and 10% compared to the maximum moment at rest. The maximum axial force increases to 70% of the at rest axial force on the bottom strut. The equivalent static analysis using Mononobe-Okabe (M-O) and Seed-Whitman (S-W) seismic earth pressures were compared to the centrifuge results. Considering the bending moment, the analysis results with the M-O theory underestimates but that with the S-W theory overestimates.

The Experimental Study of the Ultimate Behavior of an Avalanche Tunnel Corner Rigid Joint Composited with a Centrifugal Formed Beam (초고강도 원심성형 보가 합성된 피암터널 우각부의 극한거동에 관한 실험연구)

  • Lee, Doo-Sung;Kim, Sung-Jin;Kim, Jeong-Hoi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.128-138
    • /
    • 2022
  • In this study, in order to apply ultra-high-strength concrete beams of 100 MPa or more manufactured by centrifugal molding as the superstructure of the avalanche tunnel, the purpose is to verify the structural safety of the corner rigid joint in which the centrifugal molded beam is integrated with the substructure, which is the negative moment area. A full-size specimen was manufactured, and loading tests and analysis studies were performed. In order to expect the same effect that the maximum moment occurs in the corner joint part of the upper slab end when the standard model of the avalanche tunnel is designed with a load combination according to the specification, a modified cantilever type structural model specimen was manufactured and the corner rigid joint was fixedly connected. A study was performed to determine the performance of the method and the optimal connection construction method. The test results demonstrated that the proposed connection system outperforms others. Despite having differences in joint connection construction type, stable flexural behavior was shown in all the tested specimens. The proposed method also outperformed the behavior of centrifugally formed beams and upper slabs. The behavior of the corner rigid joint analysis model according to the F.E. analysis showed slightly greater stiffness compared to the results of the experiment, but the overall behavior was almost similar. Therefore, there is no structural problem in the construction of the corner rigid joint between the centrifugally formed beam and the wall developed in this study.

Evaluation on Side Resistance of Drilled Shafts Constructed on Sandy Gravel and Gravel Layers in Nakdong River Estuary (낙동강 하구 모래 자갈 및 자갈층에 시공된 현장타설말뚝의 주면마찰력 평가)

  • Dong-Lo Choi;Tae-Hyung Kim;Byeong-Han Jeon;Jun-Seo Jeon;Chea-Min, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, numerous structures have been constructed near the Nakdong river estuary, with pile foundations embedded in sand and gravel layers. In this study, the side resistance for six drilled shafts embedded in that region was evaluated based on the results of bi-directional and static axial compressive pile load tests. Subsequently, these results were compared with the side resistance calculated using domestic and foreign design codes such as FHWA (1999), KDS (2021), and AIJ (2004). Based on the test results, the evaluated side resistances ranged from 120 to 444kPa. However, the estimated values obtained from the design codes ranged from 69.3 to 170kPa, which were less than 50% of the evaluated values. It was observed that the empirical methods and correlations used in design codes provide a conservative estimation of the side resistance for drilled shafts embedded in sand and gravel layers. It implies that a suitable domestic approach should be developed to accurately estimate the side resistance of pile in sandy gravel and gravel layers near the Nakdong river estuary.