Browse > Article
http://dx.doi.org/10.4047/jap.2021.13.6.385

Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses  

Arcila, Laura Viviana Calvache (Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Institute of Science and Technology)
Ramos, Nathalia de Carvalho (Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Institute of Science and Technology)
Campos, Tiago Moreira Bastos (Technological Institute of Aeronautics, Physics department)
Dapieve, Kiara Serafini (College of Dentistry, Federal University of Santa Maria (UFSM))
Valandro, Luiz Felipe (College of Dentistry, Federal University of Santa Maria (UFSM))
de Melo, Renata Marques (Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Institute of Science and Technology)
Bottino, Marco Antonio (Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Institute of Science and Technology)
Publication Information
The Journal of Advanced Prosthodontics / v.13, no.6, 2021 , pp. 385-395 More about this Journal
Abstract
PURPOSE. To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS. Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS. All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION. Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.
Keywords
Dental ceramics; Mechanical stress; Y-TZP ceramic; Step-stress accelerated fatigue test; Material thickness;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Pecho OE, Ghinea R, Ionescu AM, Cardona Jde L, Paravina RD, Perez Mdel M. Color and translucency of zirconia ceramics, human dentine and bovine dentine. J Dent 2012;40:e34-40.   DOI
2 Kolakarnprasert N, Kaizer MR, Kim DK, Zhang Y. New multi-layered zirconias: Composition, microstructure and translucency. Dent Mater 2019;35:797-806.   DOI
3 Sen N, Isler S. Microstructural, physical, and optical characterization of high-translucency zirconia ceramics. J Prosthet Dent 2020;123:761-8.   DOI
4 Arata A, Campos TM, Machado JP, Lazar DR, Ussui V, Lima NB, Tango RN. Quantitative phase analysis from X-ray diffraction in Y-TZP dental ceramics: a critical evaluation. J Dent 2014;42:1487-94.   DOI
5 Luthardt RG, Holzhuter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, Walter M. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res 2002;81:487-91.   DOI
6 Fraga S, Pereira GKR, Freitas M, Kleverlaan CJ, Valandro LF, May LG. Loading frequencies up to 20Hz as an alternative to accelerate fatigue strength tests in a Y-TZP ceramic. J Mech Behav Biomed Mater 2016;61:79-86.   DOI
7 Grambow J, Wille S, Kern M. Impact of changes in sintering temperatures on characteristics of 4YSZ and 5YSZ. J Mech Behav Biomed Mater 2021;120:104586.   DOI
8 Pereira GKR, Venturini AB, Silvestri T, Dapieve KS, Montagner AF, Soares FZM, Valandro LF. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J Mech Behav Biomed Mater 2015;55:151-63.   DOI
9 Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent 2009;4:130-51.
10 Nishioka G, Prochnow C, Firmino A, Amaral M, Bottino MA, Valandro LF, Renata Marques de M. Fatigue strength of several dental ceramics indicated for CADCAM monolithic restorations. Braz Oral Res 2018;32:e53.
11 Suresh S. Fatigue of ceramics. In: Cambridge solid state science series. 2nd ed., Combridge: Series CSSS editor; 1998.
12 Yan J, Kaizer MR, Zhang Y. Load-bearing capacity of lithium disilicate and ultra-translucent zirconias. J Mech Behav Biomed Mater 2018;88:170-5.   DOI
13 Belli R, Geinzer E, Muschweck A, Petschelt A, Lohbauer U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater 2014;30:424-32.   DOI
14 Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013;57:236-61.   DOI
15 Alraheam IA, Donovan T, Boushell L, Cook R, Ritter AV, Sulaiman TA. Fracture load of two thicknesses of different zirconia types after fatiguing and thermocycling. J Prosthet Dent 2020;123:635-40.   DOI
16 Ebeid K, Wille S, Salah T, Wahsh M, Zohdy M, Kern M. Evaluation of surface treatments of monolithic zirconia in different sintering stages. J Prosthodont Res 2018;62:210-7.   DOI
17 Dal Piva AMO, Tribst JPM, Benalcazar Jalkh EB, Anami LC, Bonfante EA, Bottino MA. Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency. Dent Mater 2021;37:e140-50.
18 Ambre MJ, Aschan F, Vult von Steyern P. Fracture strength of yttria-stabilized zirconium-dioxide (Y-TZP) fixed dental prostheses (FDPs) with different abutment core thicknesses and connector dimensions. J Prosthodont 2013;22:377-82.   DOI
19 Kelly JR, Cesar PF, Scherrer SS, Della Bona A, van Noort R, Tholey M, Vichi A, Lohbauer U. ADM guidance-ceramics: Fatigue principles and testing. Dent Mater 2017;33:1192-204.   DOI
20 Anstis GR. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J Am Ceram Soc 1981;64:533-8.   DOI
21 Jing Z, Ke Z, Yihong L, Zhijian S. Effect of multistep processing technique on the formation of micro-defects and residual stresses in zirconia dental restorations. J Prosthodont 2014;23:206-12.   DOI
22 Scherrer SS, Quinn JB, Quinn GD, Kelly JR. Using qualitative fractography. Int J Prosthodont 2006;19:185-92.
23 Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:e327-37.   DOI
24 Triwatana P, Srinuan P, Suputtamongkol K. Comparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic. J Adv Prosthodont 2013;5:36-43.   DOI
25 Elsaka SE. Optical and mechanical properties of newly developed monolithic multilayer zirconia. J Prosthodont 2019;28:e279-84.   DOI
26 Ramos-Tonello CM, Cesar PF, Bonfante EA, Rubo JH, Wang L, Borges AFS. Fractographic principles applied to Y-TZP mechanical behavior analysis. J Mech Behav Biomed Mater 2016;57:215-23.   DOI
27 Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307.   DOI
28 Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30:1195-203.   DOI
29 Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J Prosthet Dent 2018;119:308.e1-7.   DOI
30 Jansen JU, Lumkemann N, Letz I, Pfefferle R, Sener B, Stawarczyk B. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials. J Prosthet Dent 2019;122:396-403.   DOI
31 Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97:140-7.   DOI
32 Harianawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont 2014;6:456-61.   DOI
33 Ozkurt-Kayahan Z. Monolithic zirconia: A review of the literature. Biomed Res 2016;27:1427-36.
34 Kwon SJ, Lawson NC, McLaren EE, Nejat AH, Burgess JO. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J Prosthet Dent 2018;120:132-7.   DOI
35 Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002;88:4-9.   DOI
36 Pereira GKR, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater 2018;85:57-65.   DOI
37 Johnson DL. Microwave and plasma sintering of ceramics. Ceram Int 1991;17:295-300.   DOI
38 Camposilvan E, Leone R, Gremillard L, Sorrentino R, Zarone F, Ferrari M, Chevalier J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater 2018;34:879-90.   DOI
39 Chevalier J, Deville S, Munch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25:5539-45.   DOI
40 Inokoshi M, De Munck J, Minakuchi S, Van Meerbeek B. Meta-analysis of bonding effectiveness to zirconia ceramics. J Dent Res 2014;93:329-34.   DOI
41 Tsukuma K, Yamashita I, Kusunose T. Transparent 8 mol% Y2O3-ZrO2 (8Y) ceramics. J Am Ceram Soc 2008;91:813-8.   DOI
42 Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont 2013;5:161-6.   DOI
43 Zhang H, Li Z, Kim BN, Morita K, Yoshida H, Hiraga K, Sakka Y. Effect of alumina dopant on transparency of tetragonal zirconia. J Nanomater 2012;2012:5269064.
44 Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil 2010;37:641-52.   DOI
45 Dapieve KS, Guilardi L s F, Silvestri T, Rippe MP, Pereira GKR, Valandro LF. Mechanical performance of Y-TZP monolithic ceramic after grinding and aging: Survival estimates and fatigue strength. J Mech Behav Biomed Mater 2018;87:288-95.   DOI
46 Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur J Prosthodont Restor Dent 2018;26:62-74.
47 Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25.   DOI
48 Borba M, Cesar PF, Griggs JA, Della Bona A. Stepstress analysis for predicting dental ceramic reliability. Dent Mater 2013;29:913-8.   DOI
49 Nelson W. Accelerated life testing - Step-stress models and data analyses. IEEE Trans Reliab 1980;R-29:103-8.   DOI
50 Bonfante EA, Coelho PG. A critical perspective on mechanical testing of implants and prostheses. Adv Dent Res 2016;28:18-27.   DOI