DOI QR코드

DOI QR Code

Evaluation on Side Resistance of Drilled Shafts Constructed on Sandy Gravel and Gravel Layers in Nakdong River Estuary

낙동강 하구 모래 자갈 및 자갈층에 시공된 현장타설말뚝의 주면마찰력 평가

  • Received : 2023.03.30
  • Accepted : 2023.06.26
  • Published : 2023.09.30

Abstract

Recently, numerous structures have been constructed near the Nakdong river estuary, with pile foundations embedded in sand and gravel layers. In this study, the side resistance for six drilled shafts embedded in that region was evaluated based on the results of bi-directional and static axial compressive pile load tests. Subsequently, these results were compared with the side resistance calculated using domestic and foreign design codes such as FHWA (1999), KDS (2021), and AIJ (2004). Based on the test results, the evaluated side resistances ranged from 120 to 444kPa. However, the estimated values obtained from the design codes ranged from 69.3 to 170kPa, which were less than 50% of the evaluated values. It was observed that the empirical methods and correlations used in design codes provide a conservative estimation of the side resistance for drilled shafts embedded in sand and gravel layers. It implies that a suitable domestic approach should be developed to accurately estimate the side resistance of pile in sandy gravel and gravel layers near the Nakdong river estuary.

최근 낙동강 하구에 많은 구조물이 건설되고 있으며 말뚝기초는 모래층 및 자갈층에 시공되고 있다. 이 연구에서는 낙동강 하구의 모래 자갈층 및 자갈층에 시공된 6개의 현장타설말뚝의 정재하시험 및 양방향재하시험 결과를 통해 비점성토층의 주면마찰력을 분석하였다. 또한 국·내외 설계기준인 FHWA(1999), KDS(2021), AIJ(2004)에 따라 계산된 주면마찰력과 실험값을 비교하였다. 6개 말뚝의 재하시험 결과를 통해 확인된 주면마찰력은 120~444kPa로 나타났다. 설계기준에 따라 산정한 주면마찰력은 69.3~170kPa이었으며 시험값 대비 50% 수준으로 나타났으며 이를 통해 설계기준들이 비점성토층에 근입된 현장타설말뚝의 주면마찰력을 상당히 보수적으로 평가하고 있음을 확인할 수 있었다. 국내 낙동강 하구 모래 자갈층 및 자갈층의 주면마찰력 산정을 위한 적절한 국내 제안식이 개발되어야 할 것으로 판단되었다.

Keywords

References

  1. AASHTO (2007), AASHTO LRFD Bridge Design Specitication 4th Edition, AASHTO, Washington, D.C.
  2. AASHTO (2018), AASHTO LRFD Bridge Design Specitication 8th Edition, AASHTO, Washington, D.C.
  3. Architecture Institute of Japan (2004), Architecture Foundation Structure Design Guide (in Japanese)
  4. Architecture Institute of Korea (2006), Architecture Foundation Structure Design Guide (in Korean)
  5. Choi, D. L., Park, K. H., Kim, C. M. and Kim, T. H. (2022), "Changes in Ultimate Bearing Capacity according to the Position of the End of the Drilled Shaft", Journal of Korean Geosynthetics Society, Vol.21, No.3, pp.49-59.
  6. FHWA (1999), Drilled Shafts: Construction Procedures and Design Methods, FHWA Publication No. FHWA-IF-99-025. Department of Transportation, McLean, VA, Federal Highway Administration, Office of Implementation
  7. Hong, S. W. and Hwang, G. B. (2019), "A Study on Characteristics of the Unit Skin Friction Using the Wall Roughness in the Soft Rock", Journal of Korean Geotechnical Society, Vol.35, No.12, pp.7-13.
  8. Hong, W. P., Yea, G. G. and Lee, J. H. (2005), "Ecaluation of Skin Fricion on Large Drilled Shaft", Journal of Korean Geotechnical Society, Vol.21, No.1, pp.93-103.
  9. KDS (2021), KDS 24 14 51, Bridge Substructures Design Standards(LRFD). (in Korean)
  10. KGS (2018), Explanation of Foundation Design Standards for Structures, CIR. (in Korean)
  11. KSCE (2020), OO Foundation Pile Safety Review Report. (in Korean)
  12. OO Construction Testing Institute Co., Ltd. (2009), OO Highway Drillde Shaft (φ2500) Bi-directional High Pressure Pile Load Test(BDH PLT) Report. (in Korean)
  13. OO Geotechnical & Construction Eng. (2005), OO Bridge Construction Site Drilled Shaft (φ1500) Load Test Report (Load Transfer and Bi-Directional Load Test). (in Korean)
  14. Song, M. J., Park, Y. H, and Kim, M. M. (2013), "Skin Friction and End Bearing Resistances of Rock-socketed Piles Observed in Bi-directional Pile Load Tests", Journal of Korean Geotechnical Society, Vol.29, No.7, pp.17-26. https://doi.org/10.7843/kgs.2013.29.7.17