• Title/Summary/Keyword: static stability

Search Result 1,004, Processing Time 0.029 seconds

Malware Detection with Directed Cyclic Graph and Weight Merging

  • Li, Shanxi;Zhou, Qingguo;Wei, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3258-3273
    • /
    • 2021
  • Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.

Passivity-Based Control System of Permanent Magnet Synchronous Motors Based on Quasi-Z Source Matrix Converter

  • Cheng, Qiming;Wei, Lin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1527-1535
    • /
    • 2019
  • Because of the shortcomings of the PID controllers and traditional drive systems of permanent magnet synchronous motors (PMSMs), a PMSM passivity-based control (PBC) drive system based on a quasi-Z source matrix converter (QZMC) is proposed in this paper. The traditional matrix converter is a buck converter with a maximum voltage transmission ratio of only 0.866, which limits the performance of the driven motor. Therefore, in this paper a quasi-Z source circuit is added to the input side of the two-stage matrix converter (TSMC) and its working principle has also been verified. In addition, the controller of the speed loop and current loop in the conventional vector control of a PMSM is a PID controller. The PID controller has the problem since its parameters are difficult to adjust and its anti-interference capability is limited. As a result, a port controlled dissipative Hamiltonian model (PCHD) of a PMSM is established. Thereafter a passivity-based controller based on the interconnection and damping assignment (IDA) of a QZMC-PMSM is designed, and the stability of the equilibrium point is theoretically verified. Simulation and experimental results show that the designed PBC control system of a PMSM based on a QZMC can make the PMSM run stably at the rated speed. In addition, the system has strong robustness, as well as good dynamic and static performances.

Rotational Stiffness of Connection in Multi-span Vinyl Greenhouse (내재해형 연동 비닐하우스 접합부의 회전강성)

  • Kim, Min-Sun;Choi, Ki-Sun;Shin, Ji-Uk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.3-10
    • /
    • 2018
  • Recently, severe damage to domestic horticultural structures is frequently observed due to extreme climate effects. To minimize the structures' damage, a study on the structural stability of multi-span vinyl greenhouses is needed. This paper presents to measure the rotational stiffness of different connectors to improve the design capacities of the specification. The paper investigated fourteen types of the different connectors, which was commonly used in the multi-span greenhouses, and three different types of the connectors predicted to be under moment-connection were selected: i) T-clamp, ii) U-clamp, iii) C-clamp. Static loading tests for three different connectors were performed to measure the rotational stiffness. Additionally, the boundary condition for the structural design was proposed based on the experimental results of the rotational stiffness. One of three connectors, C-clamp had larger rotational stiffness than other connectors, and the experimental results presented the three connectors had boundary conditions; i) T-clamp was pinned-connection, ii) U-clamp was semi-rigid connection, iii) C-clamp was semi-rigid connection.

Experimental determination of the resistance of a single-axis solar tracker to torsional galloping

  • Martinez-Garcia, Eva;Marigorta, Eduardo Blanco;Gayo, Jorge Parrondo;Navarro-Manso, Antonio
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.519-528
    • /
    • 2021
  • One of the most efficient designs of solar trackers for photovoltaic panels is the single-axis tracker, which holds the panels along a torque tube that is driven by a motor at the central section. These trackers have evolved to become extremely slender structures due to mechanical optimization against static load and the need of cost reduction in a very competitive market. Owing to the corresponding decrease in mechanical resistance, some of these trackers have suffered aeroelastic instability even at moderate wind speeds, leading to catastrophic failures. In the present work, an analytical and experimental approach has been developed to study that phenomenon. The analytical study has led to identify the dimensionless parameters that govern the motion of the panel-tracker structure. Also, systematic wind tunnel experiments have been carried out on a 3D aeroelastic scale model. The tests have been successful in reproducing the aeroelastic phenomena arising in real-scale cases and have allowed the identification and a close characterization of the phenomenon. The main results have been the determination of the critical velocity for torsional galloping as a function of tilt angle and a calculation methodology for the optimal sizing of solar tracker shafts.

On thermally induced instability of FG-CNTRC cylindrical panels

  • Hashemi, Razieh;Mirzaei, Mostafa;Adlparvar, Mohammad R.
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.43-57
    • /
    • 2021
  • In this study, thermally induced bifurcation buckling of shallow composite cylindrical panels reinforced with aligned single-walled carbon nanotubes is investigated. Distribution of carbon nanotubes across the thickness of the cylindrical panel as reinforcements may be either uniform or functionally graded. Thermo-mechanical properties of the matrix and reinforcements are considered to be temperature dependent. Properties of the cylindrical panel are obtained using a refined micromechanical approach which introduces the auxiliary parameters into the rule of mixtures. The governing equations are obtained by using the static version of the Hamilton principle based on the first-order shear deformation theory and considering the linear strain-displacement relation. An energy-based Ritz method and an iterative process are used to obtain the critical buckling temperature of composite cylindrical panel with temperature dependent material properties. In addition, the effect of various parameters such as the boundary conditions, different geometrical conditions, distribution pattern of CNTs across the thickness and their volume fraction are studied on the critical buckling temperature and buckled pattern of cylindrical panels. It is shown that FG-X type of CNT dispersion is the most influential type in thermal stability.

Relationships among Lower Extremity Muscle Circumference, Proprioception, ROM, Muscle Strength, and Balance Control Ability in Young Adults

  • Shin, Young-Jun;Kim, Seong-gil
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.4
    • /
    • pp.168-174
    • /
    • 2022
  • Purpose: The purpose of this study was to analyze the correlation between balance control ability and leg circumference, proprioception, range of motion (ROM), and muscle strength in young adults. Methods: The subjects of this study were 30 university students who were enrolled in D university in Gyeongbuk province. We measured the dynamic balance and static balance using the Biorescue. The muscular strengths of the hip, knee, and ankle joints were measured using a muscle contraction dynamometer. The ROM and proprioception were measured using an inclinometer. Pearson correlation analysis was used to test the correlations between balance control ability and variables. Results: Sway length was significantly correlated with knee and hip joint muscle strength, ROM, and proprioception of hip and ankle joints (p<0.05). Sway speed was significantly correlated with ROM and proprioception in hip joints (p<0.05). Limit of stability was significantly correlated with muscle strength and ROM in ankle joints, and proprioception in hip, knee, and ankle joints (p<0.05). Conclusion: The sway length was most related to hip extension and ankle joint plantar flexion in the range of motion and ankle joint plantar flexion in proprioception. Overall, balance training for young adults will be of effective help if the treatment focuses on the knee and hip joints, range of motion and the ankle and hip joints' proprioception.

Comprehensive evaluating the stability of slope reinforced with free and fixed head piles

  • Xixi Xiong;Ying Fan;Jinzhe Wang;Pooya Heydari
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.523-540
    • /
    • 2023
  • The failure of slope can cause remarkable damage to either human life or infrastructures. Stabilizing piles are widely utilized to reinforce slope as a slip-resistance structure. The workability of pile-stabilized slopes is affected by various parameters. In this study, the performance of earth slope reinforced with piles and the behavior of piles under static load, by shear reduction strength method using the finite difference software (FLAC3D) has been investigated. Parametric studies were conducted to investigate the role of pile length (L), different pile distances from each other (S/D), pile head conditions (free and fixed head condition), the effect of sand density (loose, medium, and high-density soil) on the pile behavior, and the performance of pile-stabilized slopes. The performance of the stabilized slopes was analyzed by evaluating the factor of safety, lateral displacement and bending moment of piles, and critical slip mechanism. The results depict that as L increased and S/D reduced, the performance of slopes stabilized with pile gets better by raising the soil density. The greater the amount of bending moment at the shallow depths of the pile in the fixed pile head indicates the effect of the inertial force due to the structure on the pile performance.

Performance evaluation of plasma nitrided 316L stainless steel during long term high temperature sodium exposure

  • Akash Singh;R. Thirumurugesan;S. Krishnakumar;Revati Rani;S. Chandramouli;P. Parameswaran;R. Mythili
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1468-1475
    • /
    • 2023
  • Enhancement of wear resistance of components used in fast reactors is necessary for long service life of the components. Plasma nitriding is a promising surface modification technology to impart high hardness and improved wear resistance of various steel components. This study discusses the characterization of chrome nitrided SS316L casing ring used in secondary sodium pump of fast breeder reactor and its stability under long term sodium exposure. Microstructural and hardness analysis showed that stress relieved component could be chrome nitrided successfully to a thickness of about 100 ㎛. Assessment of in-sodium performance of the chrome nitrided casing ring subjected to long term exposure up to 5000h at 550℃, showed retention of chrome nitrided layer with a case depth almost similar to that before sodium exposure. A slight decrease in the hardness was observed due to prolonged high temperature sodium exposure. Tribological studies indicate very low coefficient of friction indicating the retention of good wear resistance of the coating even after long term sodium exposure.

Multi-objective path planning for mobile robot in nuclear accident environment based on improved ant colony optimization with modified A*

  • De Zhang;Run Luo;Ye-bo Yin;Shu-liang Zou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1838-1854
    • /
    • 2023
  • This paper presents a hybrid algorithm to solve the multi-objective path planning (MOPP) problem for mobile robots in a static nuclear accident environment. The proposed algorithm mimics a real nuclear accident site by modeling the environment with a two-layer cost grid map based on geometric modeling and Monte Carlo calculations. The proposed algorithm consists of two steps. The first step optimizes a path by the hybridization of improved ant colony optimization algorithm-modified A* (IACO-A*) that minimizes path length, cumulative radiation dose and energy consumption. The second module is the high radiation dose rate avoidance strategy integrated with the IACO-A* algorithm, which will work when the mobile robots sense the lethal radiation dose rate, avoiding radioactive sources with high dose levels. Simulations have been performed under environments of different complexity to evaluate the efficiency of the proposed algorithm, and the results show that IACO-A* has better path quality than ACO and IACO. In addition, a study comparing the proposed IACO-A* algorithm and recent path planning (PP) methods in three scenarios has been performed. The simulation results show that the proposed IACO-A* IACO-A* algorithm is obviously superior in terms of stability and minimization the total cost of MOPP.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.