• 제목/요약/키워드: static nonlinear

검색결과 1,080건 처리시간 0.023초

계류삭의 비선형운동특성해석에 관한 연구 (A Study on Nonlinear Analysis of Mooring Lines)

  • 이상무;김용철;김영환;홍석원;김훈철
    • 대한조선학회지
    • /
    • 제23권1호
    • /
    • pp.3-12
    • /
    • 1986
  • This paper investigates the static configurations and the dynamic behaviors of a single point mooring line. To obtain the static configuration and static tension distribution along the mooring line, including the effect of fluid nonlinear drag and the elasticity of the line, the Runge-Kutta fourth order numerical method was used. The relationship between the horizontal excursion and the horizontal restoring force component of the mooring line, which is very important to a mooring line design, and the effect of a subsurface buoy on the static configuration are presented. In nonlinear dynamic analysis including nonlinear fluid drag acting on the line and geometrical nonlinearity for large deflections, finite element method using updated Lagrangian was used to obtain the solution. In the case of upper end harmonic excitation of the mooring line, the dynamic motion and the tension were also presented.

  • PDF

노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구 (Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests)

  • 문성호
    • 한국도로학회논문집
    • /
    • 제19권1호
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

Nonlinear static analysis of functionally graded porous beams under thermal effect

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.399-415
    • /
    • 2017
  • This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.

Dynamic Increase factor based on residual strength to assess progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.617-624
    • /
    • 2017
  • In this study, a new empirical method is presented to obtain Dynamic Increase Factor (DIF) in nonlinear static analysis of structures against sudden removal of a gravity load-bearing element. In this method, DIF is defined as a function of minimum ratio of difference between maximum moment capacity ($M_u$) and moment demand ($M_d$) to plastic moment capacity ($M_p$) under unamplified gravity loads of elements. This function determines the residual strength of a damaged building before amplified gravity loads. For each column removal location, a nonlinear dynamic analysis and a step-by-step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived, which correspond to the ratio min $[(M_u-M_d)/M_p]$ of beams in the bays immediately adjacent to the removed column, and at all floors above it. Therefore, the new DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of a moment frame structure. The proposed DIF formulas can estimate the real residual strength of a structure based on critical member.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I))

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

복합재료 평판의 비선형 3차원 저속 충격 해석 (3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates)

  • 김승조;지국현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF

구조적인 제약을 갖는 정적 출력 되먹임 안정화 제어기 (Structured Static Output Feedback Stabilization)

  • 이준화
    • 전자공학회논문지
    • /
    • 제50권3호
    • /
    • pp.155-159
    • /
    • 2013
  • 본 연구에서는 정적 출력 되먹임 제어기를 구하기 위한 비선형 행렬 부등식 조건과 비선형 최적화 문제를 제안한다. 제안된 최적화 문제는 선형 행렬부등식 제약 조건과 비선형 목적함수를 가지며, 구조적인 제약이 있는 제어기 설계에도 적용할 수 있음을 보인다. 비선형 목적함수를 선형화시키고, 선형화된 최적화 문제를 반복적으로 푸는 방법으로 제안된 비선형 최적화 문제를 풀어 정적 출력 되먹임 제어기를 구할 수 있다. 제안된 방법을 실제 문제에 적용하여 그 유효성을 보인다.

고차모드의 효과를 고려한 비선형정적평가방법 (Nonlinear Pushover Analysis Considering Higher Mode Effects)

  • 엄태성;이혜린;박홍근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.153-160
    • /
    • 2005
  • A new nonlinear static analysis method, Effective Modal Pushover Analysis (EMPA) which can evaluate earthquake responses such as story drift and plastic rotation of plastic hinges addressing higher mode effects was developed. Unlike existing nonlinear static procedure based on properties of fundamental vibration mode, the EMPA performs nonlinear static analysis using multiple effective modes constructed by direct combination of natural vibration modes. Therefore higher mode effects can be efficiently considered. In the present study, procedures of the EPMA evaluating inelastic earthquake responese were established and the results were verified by nonlinear time history analysis. The EMPA can be applied to seismic evaluation of high-rise buildings and irregular buildings where higher mode effects become conspicuous.

  • PDF

다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석 (Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes)

  • 강병두;박진화;전대환;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.