• Title/Summary/Keyword: static mechanical properties

Search Result 473, Processing Time 0.034 seconds

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

Numerical Prediction of Mechanical Properties of Composites (합성재료 물성치의 수치적 예측)

  • 신수봉;고현무
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.11-18
    • /
    • 1997
  • Mechanical properties of a composite mixed by components with known material properties are numerically predicted at various volume fractions rather than investigated through experiments. The properties, elastic modulus and Poisson's ratio, are estimated by minimizing the error between the static displacements computed from a model for the composite and those computed from a model of homogeneous and isotropic material. A finite element model for a composite is proposed to distribute different types of material components easily into the model depending on the volume fraction. Mechanical properties of a composite filled with solid mircospheres are predicted numerically through a sample study and the estimated results are compared with experimental results and some theories.

  • PDF

A Study on the Mechanical Properties by High-Frequency Induction Hardening of SCM440 Steel (고주파 담금질에 의한 SCM440강의 기계적 특성에 관한 연구)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Tae-Il;Lee, Mun-Yong;Kim, Dong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • Surface hardening treatments, such as using the high-frequency induction hardening method, are widely used to increase the fatigue life and prevent the failure of materials by locally increasing the surface hardness. This method, in particular, brings an improvement in static strength by compressive residual surface stress due to the hardening. In this study, the mechanical properties of high-frequency induction hardened SCM440 steel were investigated. These results were also compared with those for base metal and a Q/T (tempering after quenching) treatment specimen. The test results showed that partially high-frequency induction hardened SCM440 steel specimens were more improved in static strength, surface hardness, fatigue limit, and anti-wear than the base metal and Q/T treatment specimens. In particular, the fatigue limit of the high-frequency induction hardened SCM440 steel increased by more than about 52% compared to that of base metal and by about 25% compared to that of the Q/T specimen.

Characterizing Barium Titanate Piezoelectric Material Using the Finite Element Method

  • Butt, Zubair;Rahman, Shafiq Ur;Pasha, Riffat Asim;Mehmood, Shahid;Abbas, Saqlain;Elahi, Hassan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.163-168
    • /
    • 2017
  • The aim of the current research was to develop and present an effective methodology for simulating and analyzing the electrical and structural properties of piezoelectric material. The finite element method has been used to make precise numerical models when dielectric, piezoelectric and mechanical properties are known. The static and dynamic responses of circular ring-shaped barium titanate piezoelectric material have been investigated using the commercially available finite element software ABAQUS/CAE. To gain insight into the crystal morphology and to evaluate the purity of the material, a microscopic study was conducted using a scanning electron microscope and energy dispersive x-ray analysis. It is found that the maximum electrical potential of 6.43 V is obtained at a resonance frequency of 35 Hz by increasing the vibrating load. The results were then compared with the experimentally predicted data and the results agreed with each other.

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Mechanical Properties of High Stressed Silicon Nitride Beam Measured by Quasi-static and Dynamic Techniques

  • Shin, Dong Hoon;Kim, Hakseong;McAllister, Kirstie;Lee, Sangik;Kang, Il-Suk;Park, Bae Ho;Campbell, Eleanor E.B.;Lee, Sang Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.1-361.1
    • /
    • 2016
  • Due to their high sensitivity, fast response, small energy consumption and ease of integration, nanoelectromechanical systems (NEMS) have attracted much interest in various applications such as high speed memory devices, energy harvesting devices, frequency tunable RF receivers, and ultra sensitive mass sensors. Since the device performance of NEMS is closely related with the mechanical and flexural properties of the material in NEMS, analysis of the mechanical and flexural properties such as intrinsic tensile stress and Young's modulus is a crucial factor for designing the NEMS structures. In the present work, the intrinsic mechanical properties of highly stressed silicon nitride (SiN) beams are investigated as a function of the beam length using two different techniques: (i) dynamic flexural measurement using optical interferometry and (ii) quasi-static flexural measurement using atomic force microscopy. The reliability of the results is analysed by comparing the results from the two different measurement techniques. In addition, the mass density, Young's modulus and internal stress of the SiN beams are estimated by combining the techniques, and the prospect of SiN based NEMS for application in high sensitive mass sensors is discussed.

  • PDF

Influence of Hot Isostatic Press on Quasi-static and Dynamic Mechanical Properties of SLM-printed Ti-6Al-4V Alloy (SLM 방식으로 적층 제조된 Ti-6Al-4V 합금의 HIP 처리에 따른 준정적 및 동적 기계적 특성 변화)

  • Jang, Ji-Hoon;Choi, Young-Sin;Kim, Hyeoung-Kyun;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.99-106
    • /
    • 2020
  • Selective laser melting (SLM) is an additive manufacturing process by melting metallic powders and stacking into layers, and can product complex shapes or near-net-shape (NNS) that are difficult to product by conventional processes. Also, SLM process is able to raise the efficiency of production by creating a streamlined manufacturing process. For manufacturing in SLM process using Ti-6Al-4V powder, analysis of microstructural evolution and evaluation of mechanical properties are essential because of rapid melting and solidification process of powders according to high laser power and rapid scan speed. In addition, it requires a post-processing because the soundness and mechanical properties are degraded by defects such as pore, un-melted powder, lack-of-fusion, etc. In this study, hot isostatic press (HIP) was conducted as a post-processing on SLM-printed Ti-6Al-4V alloy. Microstructure of post-processed Ti-6Al-4V alloy was compared to as-built Ti-6Al-4V, and the evolution of quasi-static (Vickers hardness, room temperature tensile characteristic) and dynamic (high-cycle fatigue characteristic) mechanical properties were analyzed.

Identification of Flexion Withdrawal Reflex Using Linear Model in Spinal Cord Injury

  • Kim Yong-Chul;Youm Youn-Gil
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1183-1194
    • /
    • 2006
  • The aim of this study was to identify the characteristics of the flexion withdrawal reflex modulated by the hip angle and hip movement in spinal cord injury (SCI). The influence of the hip position and passive movement were tested in 6 subjects with chronic SCI. Each subject placed in a supine position and lower leg was fixed with the knee at 5 -45 degree flexion and the ankle at 25-40 degree plantar flexion. A train of 10 stimulus pulses were applied at 200 Hz to the skin of the medial arch to trigger flexion reflexes. From results of the regression analysis, static properties of normalized muscle activation of flexor muscles have the linear relationship with respect to hip angle (P< 0.05). In order to verify the neural contribution of flexion reflex, we compared the static and dynamic gains of estimated muscle activations with measured EMG of ankle flexor muscle. Form this study, we postulate that the torque and muscle response of flexion withdrawal reflex have linear relationship with hip angle and angular velocity.

Investigation into static characteristics of ISB panels with the pyramidal structure as a internally structured material (내부에 피라미드 구조를 가지는 ISB 판넬의 정적 특성 분석)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Hahn Gil-Young;Kim Jin-Suk;Jung Chang-Gyun;Yang Dong-Yol
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.354-359
    • /
    • 2005
  • The objective of this research work is to investigate into static characteristics of ISB panels with the pyramidal structure as a internally structured material. In order to investigate the behavior of material deformation and fracture characteristics, several tensile tests have been carried out for the ISB panel and skin sheet. Through the results of the experiments, the mechanical properties of ISB panel and skin sheet and fracture characteristics have been obtained. In addition, the mechanical properties of the ISB panel have been compared with that of the skin sheet by the view point of a specific modulus, a specific yield strength and a specific strength. From the results of the comparision, it has been shown that the ISB panel has an excellent static characteristics.

  • PDF