Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.3.163

Characterizing Barium Titanate Piezoelectric Material Using the Finite Element Method  

Butt, Zubair (Department of Mechatronics Engineering, Chakwal Campus, University of Engineering and Technology Taxila)
Rahman, Shafiq Ur (Department of Mechatronics Engineering, Chakwal Campus, University of Engineering and Technology Taxila)
Pasha, Riffat Asim (Department of Mechanical Engineering, University of Engineering and Technology Taxila)
Mehmood, Shahid (Department of Mechanical Engineering, University of Engineering and Technology Taxila)
Abbas, Saqlain (Department of Mechanical Engineering, University of Engineering and Technology Taxila)
Elahi, Hassan (Department of Aerospace Engineering, La Sapienza University of Rome)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.3, 2017 , pp. 163-168 More about this Journal
Abstract
The aim of the current research was to develop and present an effective methodology for simulating and analyzing the electrical and structural properties of piezoelectric material. The finite element method has been used to make precise numerical models when dielectric, piezoelectric and mechanical properties are known. The static and dynamic responses of circular ring-shaped barium titanate piezoelectric material have been investigated using the commercially available finite element software ABAQUS/CAE. To gain insight into the crystal morphology and to evaluate the purity of the material, a microscopic study was conducted using a scanning electron microscope and energy dispersive x-ray analysis. It is found that the maximum electrical potential of 6.43 V is obtained at a resonance frequency of 35 Hz by increasing the vibrating load. The results were then compared with the experimentally predicted data and the results agreed with each other.
Keywords
Barium titanate; Finite element method; Static analysis; Dynamic analysis; SEM;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Xiao, T. Q. Yang, and Y. Dong, Appl. Phys. Lett., 104, 223904 (2014).   DOI
2 Z. Butt, R. A. Pasha, F. Qayyum, Z. Anjum, and H. Elahi, J. Mech. Sci. Technol., 30, 3553 (2016).   DOI
3 S. Wang, K. H. Lam, C. L. Sun, K. W. Kwok, M. S. Guo, and X. Z. Zhao, Appl. Phys. Lett., 90, 11350 (2007). [DOI: http://dx.doi.org/10.1063/1.2713357]
4 Z. Butt and R. A. Pasha, IOP Conf. Ser., Mater. Sci. Eng., 14601 (2016).
5 X. R. Chen, T. Q. Yang, W. Wang, and X. Yao, Ceramics International, 38S, S271 (2012).
6 F. Qayyum, M. Shah, S. Manzoor, and M. Abbas, Mater. Sci. Technol., 31, 317 (2015).   DOI
7 Z. Anjum, F. Qayyum, S. Khushnood, S. Ahmed, and M. Shah, Materials and Design, 87, 750 (2015).   DOI
8 M. W. Lin, J. Intell. Material Sys. And Structures, 5, 869 (1994).   DOI
9 W. S. Hwang and H. C. Parket, AIAA J., 31, 930 (1993).   DOI
10 A. H. Allik and J. R. Hughes, Int. J. Num. Methods Eng., 2, 151 (1970).   DOI
11 R. Lerch, IEEE Trans. Ultrasonics Feroelectr. Frequency Control, 37, 233 (1990).   DOI
12 D. H. Wu, W. T. Chien, C. J. Yang, and Y. T. Yen, Sensor. Actuat. A, 118, 171 (2005).   DOI
13 C.D.M. Junior and A. Erturk, Journal of Sound and Vibration, 327, 9 (2009).   DOI
14 F. Lowrie, National Physics Laboratory (Teddington, Middlesex, UK, 1999).
15 M. Staworko and T. Uhl, MECHANICS, 27, 4(2008).
16 J. A. Venables and C. J. Harland, Philosophical Magazine, 27, 1193 (1973).   DOI
17 X. Wu, X. Pan, and J. F. Stubbins, J. Nucl. Mater., 361, 228 (2007).   DOI
18 P. Hortola, Micron 41, 7, 904 (2010).   DOI
19 M.N.G. Nejhad and S. Pourjalali, J. of Thermoplast. Compos. Mater., 19, 309 (2006).   DOI
20 A. E. Giannakopoulos and S. Suresh, Acta Mater, 47, 2153 (1999).   DOI
21 G. H. Haertling, J. Am. Ceramic Soc., 82, 797 (1999).   DOI
22 O. Khalid, Z. Butt, W. Tanveer, and H. I. Rao, Heat Mass Transf., 53, 1391 (2017). [DOI: http://dx.doi.org/10.1007/s00231-016-1914-2]   DOI