• Title/Summary/Keyword: static design

Search Result 3,384, Processing Time 0.033 seconds

Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test (실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • Ballasted track on an asphalt roadbed can be beneficial for its various effects such as (i) decreasing of roadbed thickness by dispersing train load; (ii) prevention of both strength reduction and weakening in roadbed system by preventing rainwater penetration; and (iii) reducing maintenance cost by preventing roadbed mud-pumping and frostbite. With these beneficial effects, ballasted track on asphalt roadbed has been widely used in Europe and Japan, and relevant research for applying such ballasted track on asphalt roadbed systems in Korea is ongoing. In this study, full-scale static and dynamic train load tests were performed to compare the performance of ballasted track on asphalt roadbed and ballasted track. The optimum thickness levels of asphalt and reinforced roadbeds, corresponding to the design criteria for reinforced roadbed of high-speed railway, was estimated using the FEM program ABAQUS. Test results show that the earth pressure on reinforced roadbed of ballasted track on the asphalt roadbed was relatively low compared with that of simple ballasted track. The elastic and plastic displacements of simple ballasted track on the asphalt roadbed were also lower than those of ballasted track. These test results may indicate that the use of ballasted track on asphalt roadbed is an advantageous system in view of long-term maintenance.

A Study On The Thermal Movement Of The Reactor Coolant System For PWR (가압 경수로의 냉각재 계통 열팽창 거동에 관한 연구)

  • Yoon, Ki-Seok;Park, Taek sang;Kim, Tae-Wan;Jeon, Jang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.393-402
    • /
    • 1995
  • The structural analysis of the reactor coolant system mainly consist of too fields. The one is the static analysis considering the impact of pressure and temperature built up during normal operation. The other is the dynamic analysis to estimate the impact of postulated events such as the seismic loads or postulated branch line pipe breaks event. Since the most important goal of the RCS structural analysis is to prove the safety of the RCS during normal operation or postulated events, a widely proven theory having enough conservatism is adopted. The load occurring on the RCS during normal operation is considered as the basic design loading condition throughout whole plant life time. The most typical characteristic of the RCS during normal operation is the thermal expansion of the RCS caused by reactor coolant with high temperature and pressure. Therefore, the exact estimation on the thermal movement of the RCS is needed to get more clear understanding on the thermal movement behavior of the RCS. In this study, the general structural analysis concept and modeling method to evaluate the thermal movement of the RCS under the normal plant operation condition are presented. To discuss the validation of the suggested analysis, analysis results are compared with the measured data which ore referred from the standardized 1000 MWe PWR plant under construction.

  • PDF

A Study on the Performance of the Hybrid Ventilation System for Apartment Houses (공동주택의 하이브리드 환기시스템 성능평가 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Kim, Sang-Hee
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.89-96
    • /
    • 2012
  • The purpose of this study was to evaluate the applicability of hybrid ventilation system in apartment housings and present a design method to improve the performance of hybrid ventilation system using the CFD simulation. As the object of CFD simulation, a small apartment houses with area of $51m^2$ and $81m^2$ were selected and evaluated. The test hybrid ventilation system are window frame natural air supply & duct exhaust hybrid system(Hybrid 1) and window frame natural air supply & bathroom and livingroom exhaust hybrid ventilation system(Hybrid 2). To evaluate the ventilation efficiency, we used the locations of diffuser installed for each system as the variables through the CFD simulation. In the case of Hybrid 1, the ventilation efficiency of the exhaust duct diffuser located on the inside room was higher rather than the exhaust duct diffuser located on the entrance. In the case of Hybrid 2, the most efficient system was the system that the diffuser connecting the bathroom static pressure fan is installed on the center of the living room. The ventilation efficiency of the Hybrid 2 in the case of $51m^2$ type was more than 20% of the Hybrid 1. But, The ventilation efficiency of the Hybrid 2 in the case of $84m^2$ type was more than 14% of the Hybrid 1. Therefore, to apply the Hybrid ventilation, a study that considers various variable should be conducted.

Principle and Application of Composting for Soils Contaminated with Hazardous Organic Pollutants (오염토양 정화를 위한 콤포스팅 기술의 원리와 적용에 관한 고찰)

  • Park, Joon-Seok;Lee, Noh-Sup;In, Byung-Hoon;Namkoong, Wan;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2001
  • Composting is a cost-effective and environmentally-sound technology to treat soils contaminated with hazardous organic pollutants. Pollutants to be treated are as follows: explosives, phenolic compounds, PAHs, petroleum hydrocarbons, pesticides, and etc. Composting systems are windrow, static pile, and in-vessel. Design and operational parameters of composting are aeration modes, temperature, moisture content, nutrient supplement, amendment added, and etc. Appropriate oxygen concentration of composting for contaminated soils are 5~15%, while some compounds are degraded well at the low $O_2$ concentration of 2~5%. The most diverse microorganisms live in the temperature of $25{\sim}40^{\circ}$. 50~90% of the soil field capacity is the moisture content not to make a problem in composting. Assuming a bacterial chemical equation is $C_{60}H_{87}O_{23}N_{12}P$, theoretical C : N : P from bacterial chemical portion is approximately 20 : 5 : 1. It should be noted that the ratio does not apply to the total organic carbon measured in a waste because not all carbon metabolized by bacteria is synthesized to new cellular material. Initial C/N ratio of 25~40 is optimum. It is more economical to recycle soils or composts than to add commercial microbes.

  • PDF

Effects of Screw Diameter and Thread Shape on the Strength of Transpedicular Screw Fixation in Posterior Spinal Fusion (후방 척추고정술에서 척추경 나사못의 크기와 형태가 척추 고정력에 미치는 영향에 대한 연구)

  • Mun, Mu-S.;Ryu, Jei-C.;Yoo, Myung-C.;Kim, Ki-T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.23-26
    • /
    • 1995
  • The objectives of the present study are 1)to find the effect of the diameter of transpedicular screws on their fixational strength in pedicles under static pull-out loading, 2)to determine the biomechanical correlation between the pedicle diameter and the screw diameter, and 3)to find the effects of other factors in the screw design, such as materials, screw pitch, thread height and shape on their fixational strength. Biomechanical tests (Test I) were performed to evaluate the effect of the screw diameter on pull-out strength by using 60 porcine pedicls and six groups of custom-made pedicle screws with different diameters (the major and the minor diameter of the screws used in the testing varied from 4mm upto 9mm and from 3mm upto 8mm, respectively) while all other factors (materials, screw pitch, thread height and shape etc.) were fixed. In Test II, by using 61 porcine pedicles, the relationship between the ratio of the pedicle diameter and the screw diameter(=aspect ratio) of the custum-made screw and the pull-out strength of the screw was investigated. Test III was performed with 94 porcine pedicles and 8 different types of the commercial screws from 6 major productors in order to determine the effect of the screw diameter, pitch and the thread shape on the pull-out strength of the screw, respectively. The results of Test I showed that the axial pull-out resistance of the screw could be increased prportionaly to the screw diameter(P<0.05). But this increase in the pull-out resistance did not found when the screws of 4mm or 9mm in the diameter were employed. It was found from the results of Test II that the screws had its maximum pull-out resistant force when the aspect ratio ranging 40 - 69% (P<0.05). based on the results for the major diameter against the minor diameter of screw, the maximal pull-out resistance was found at 60-65% (P<0.05). According to these biomechanical testing results, it seems that the screw with a moderately large pitch is more desirable and the buttress-shaped screw can provide stronger fixation than the V-shape one can, if other designal factor and conditions were fixed.

  • PDF

Fracture Behaviour Analysis of the Crack at the Specimen with the Type of Mode I Composed of the Bonded Carbon Fiber Reinforced Plastic (접합된 CFRP로 구성된 Mode I형 시험편 크랙의 파괴 거동 해석)

  • Lee, Jung-Ho;Cho, Jae-Ung;Cheon, Seong-Sik;Kook, Jeong Han
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.356-360
    • /
    • 2015
  • In this paper, the carbon fiber reinforced plastic is processed as the double cantilever beam in order to estimate the fracture behavior of composite and is carried out with the static analysis as the mode I. The specimen sizes are 25 mm, 30 mm, 35 mm and 40 mm. And the material property is used with carbon. As the analysis result of mode I, the adhesive part is detached latest by the small force at the specimen thickness of 25 mm. The largest force is happened at the specimen thickness of 40 mm. The defection of the adhesive interface is shown slowest at the displacement of 9.75 mm at the specimen thickness of 25 mm. And the defection is shown quickest at the displacement of 7.82 mm at the specimen thickness of 40 mm. This defection is due to the fracture of specimen. The result of this study on the defection of the adhesive interface and the reaction force due to this defection is thought to be contributed to the safe structural design of the carbon fiber reinforced plastic.

Static Load Tests on Flexural Strength and Crack Serviceability of a Longitudinal Joint for the Slab-Type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량 종방향 연결부의 휨강도 및 균열 사용성에 관한 정적재하실험)

  • Lee, Jung-Mi;Lee, Sang-Yoon;Song, Jae-Joon;Park, Kyung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.137-145
    • /
    • 2015
  • The slab-type precast modular bridge consists of the precast slab bridge modules which are connected in the transverse direction. The longitudinal joints between the precast slab bridge modules are filled with cast-in-place mortar. The construction of the slab-type precast modular bridge is completed by applying the prestressing force on the longitudinal joints. In this study, 4-points bending tests and 3-points bending tests were conducted to examine the effects of the prestressing force and the shape of joint on the flexural strength and crack serviceability of longitudinal joint. The results of 4-points bending tests showed that the flexural strength is affected by the prestressing force but not by the shape of join. From the results of 3-points bending tests by which the bending moment and the shear force are simultaneously applied on the joints of the specimens, it is observed that the shape of joint affects on the flexural strength and the crack behavior. The results of two types of bending tests confirmed that the prestressing force according to the design code is appropriate and the joint with two shear keys gives the better performances against the crack of joint.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

Automated Composition System of Web Services by Semantic and Workflow based Hybrid Techniques (시맨틱과 워크플로우 혼합기법에 의한 자동화된 웹 서비스 조합시스템)

  • Lee, Yong-Ju
    • The KIPS Transactions:PartD
    • /
    • v.14D no.2
    • /
    • pp.265-272
    • /
    • 2007
  • In this paper, we implement an automated composition system of web services using hybrid techniques that merge the benefit of BPEL techniques, with the advantage of OWL-S, BPEL techniques have practical capabilities that fulfil the needs of the business environment such as fault handling and transaction management. However, the main shortcoming of these techniques is the static composition approach, where the service selection and flow management are done a priori and manually. In contrast, OWL-S techniques use ontologies to provide a mechanism to describe the web services functionality in machine-understandable form, making it possible to discover, and integrate web services automatically. This allows for the dynamic integration of compatible web services, possibly discovered at run time, into the composition schema. However, the development of these approaches is still in its infancy and has been largely detached from the BPEL composition effort. In this work, we describe the design of the SemanticBPEL architecture that is a hybrid system of BPEL4WS and OWL-S, and propose algorithms for web service search and integration. In particular, the SemanticBPEL has been implemented based on the open source tools. The proposed system is compared with existing BPEL systems by functional analysis. These comparisions show that our system outperforms existing systems.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.