• Title/Summary/Keyword: static buckling

Search Result 259, Processing Time 0.029 seconds

Development of Shear Type Rubber Isolator (고무의 전단 탄성을 이용한 방진마운트 개발)

  • 윤승원;이성춘
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.58-64
    • /
    • 1998
  • Rubber isolator has many advantages compared with steel spring mount. Rubber has high internal damping and can be formed various shape depending on specific purpose. On the contrary, low modulus of elasticity of rubber results the instability of rubber isolator by buckling phenomenon. This paper presents the development of shear type rubber isolator for industrial application by using shear rigidity property of rubber. The static load-deflection characteristics of developed isolator has been analyzed by the FEM. Consequently, the static load testing and a measure of the effectiveness of a vibration isolator in terms of force transmissibility for developed isolator have been carried out.

  • PDF

Plastic collapse of tapered, tip-loaded cantilevered beams

  • Wilson, James F.;El-Esnawy, Nayer A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.569-588
    • /
    • 2000
  • The plastic collapse loads and their locations are predicted for a class of tapered, initially curved, and transversely corrugated cantilevered beams subjected to static tip loading. Results of both closed form and finite element solutions for several rigid perfectly plastic and elastic perfectly plastic beam models are evaluated. The governing equations are cast in nondimensional form for efficient studies of collapse load as it varies with beam geometry and the angle of the tip load. Static experiments for laboratory-scale configurations whose taper flared toward the tip, complemented the theory in that collapse occurred at points about 40% of the beams length from the fixed end. Experiments for low speed impact loading of these configurations showed that collapse occurred further from the fixed end, between the 61% and 71% points. The results may be applied to the design of safer highway guardrail terminal systems that collapse by design under vehicle impact.

Postbuckling strength of an axially compressed elastic circular cylinder with all symmetry broken

  • Fujii, Fumio;Noguchi, Hirohisa
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.199-210
    • /
    • 2001
  • Axially compressed circular cylinders repeat symmetry-breaking bifurcation in the postbuckling region. There exist stable equilibria with all symmetry broken in the buckled configuration, and the minimum postbuckling strength is attained at the deep bottom of closely spaced equilibrium branches. The load level corresponding to such postbuckling stable solutions is usually much lower than the initial buckling load and may serve as a strength limit in shell stability design. The primary concern in the present paper is to compute these possible postbuckling stable solutions at the deep bottom of the postbuckling region. Two computational approaches are used for this purpose. One is the application of individual procedures in computational bifurcation theory. Path-tracing, pinpointing bifurcation points and (local) branch-switching are all applied to follow carefully the postbuckling branches with the decreasing load in order to attain the target at the bottom of the postbuckling region. The buckled shell configuration loses its symmetry stepwise after each (local) branch-switching procedure. The other is to introduce the idea of path jumping (namely, generalized global branch-switching) with static imperfection. The static response of the cylinder under two-parameter loading is computed to enable a direct access to postbuckling equilibria from the prebuckling state. In the numerical example of an elastic perfect circular cylinder, stable postbuckling solutions are computed in these two approaches. It is demonstrated that a direct path jump from the undeformed state to postbuckling stable equilibria is possible for an appropriate choice of static perturbations.

Influence of Stacking Sequence Conditions on the Characteristics of Impact Collapse using CFRP Thin-Wall Structures (CFRP 박육부재의 적층조건이 충격압궤특성에 미치는 영향)

  • Kim, Yeong-Nam;Choe, Hyo-Seok;Cha, Cheon-Seok;Im, Gwang-Hui;Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2945-2951
    • /
    • 2000
  • Because of the inherent flexibility in their design for improved material properties, composites have wide applications in aerospace vehicles and automobiles. The purpose of this study is to investigate the energy absorption characteristics of CFRP( Carbon Fiber Reinforced Plastics); tubes on static and impact tests. Static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine)and impact compression tests have been carried out using the vertival crushing testing machine. When such tubes were subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that control the crushing process. The collapse characteristics and energy absorption were examined. Trigger and interlaminar number affect energy absorption capability of CFRP tubes.

Analysis of Wind-Turbine Blade Behavior Under Static Dual-Axis Loads (풍력 블레이드에서 정적 이축하중 부하에 따른 거동 분석)

  • Son, Byung-Jik;Huh, Yong-Hak;Kim, Dong-Jin;Kim, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.297-304
    • /
    • 2012
  • For the assessment of the performance of a wind-turbine blade, a simulated loading test may be required. In this study, the blade behavior was investigated through numerical analysis using a dual-axis loading test, closely simulating the real operation conditions. The blade structure for the 100-kW-class wind-turbine system was modeled using the finite element (FE) program ANSYS. The failure criteria and buckling analysis under dual-axis loading were examined. The failure analysis, including fiber failure and inter-fiber failure, was performed with Puck's failure criterion. As the dual-axis load ratio increases, the relatively increased stress occurs at the trailing edge and skin surface 3300-3600 mm away from the root. Furthermore, it is revealed that increasing the dual-axis load ratio makes the location that is weakest against buckling move toward the root part. Thus, it is seen that the dual-axis load test may be an essential requirement for the verification of blade performance.

Static, Buckling and Free Vibration Analyses of Fibrous Composite Plate using Improved 8-Node Strain-Assumed Finite Formulation by Direct Modification (직접수정된 8절점 가정변형률 유한요소를 이용한 복합적층판의 정적, 좌굴 및 자유진동 해석)

  • Park, Won-Tae;Chun, Kyoung-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.107-114
    • /
    • 2004
  • In this paper, a simple improved 8-node finite element for the finite element analysis of fibrous composite plates is presented by using the direct modification. We drive explicit expressions of shape functions for the 8-node element with bilinear element geometry, which is modified so that it can represent any quadratic fields in Cartesian coordinates. The refined first-order shear deformation theory is proposed, which results in parabolic through-thickness distribution of the transverse shear strains and stresses from the formulation based on the third-order shear deformation theory. It eliminates the need for shear correction factors in the first-order theory. This finite element is further improved by combined use of assumed strain, modified shape function, and refined first-order theory. To show the effectiveness of our simple modification on the 8-node finite elements, numerical studies are carried out the static, buckling and free vibration analysis of fibrous composite plates.

A study on hull girder shear strength in bulk carriers for CSR and Harmonized CSR (CSR-BC와 Harmonized CSR-BC의 선체 전단 응력에 대한 비교 고찰)

  • Park, Jong Min;Lee, Kyu Ho;Lee, Sang Bok;Shin, Sung-Kwang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.46-49
    • /
    • 2015
  • Common Structural Rules (CSR) about bulk carriers and double-hull oil tankers of International Association of Classification Societies (IACS) has been applied to ships contracted for construction since April 2006. By unifying each society's rules, the difference of opinion in the between shipyard and ship owners, classification was reduced, and CSR has been evaluated by rules the safety structure more enhanced. However, The CSR about the bulk carriers and double hull oil tankers, important design content standards, such as the local scantling calculation, static/dynamic load case and corrosion margin and etc., are different. Therefore in order to combine the CSR, the Harmonized CSR for bulk carriers and double hull oil tankers (H-CSR) was issued on 1, January, 2014, and will be apply to ships contracted for construction after 1st July 2015. It is necessary to verify the H-CSR to optimize the structural arrangement because effective date is not far off. In this study, we compared the impact by rule change for the hull girder shear strength of bulk carriers between CSR and H-CSR in respect of the yielding and buckling strength.

  • PDF

Prediction of Column Axial Force in X-braced Seismic Steel Frames Considering Brace Buckling (가새좌굴을 고려한 X형 내진 가새골조의 기둥축력 산정법)

  • Yoon, Won Soon;Lee, Cheol Ho;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.523-535
    • /
    • 2014
  • According to the capacity design concept underlying current steel seimsic provisions, the braces in concentrically braced frames should dissipate seismic energy through cyclic tension yielding and compression buckling. On the other hand, the beams and the columns in the braced bay should remain elastic for gravity load actions and additional column axial forces resulting from the brace buckling and yielding. However, due to the difficulty in accumulating the yielding and buckling-induced column forces from different stories, empirical and often conservative approaches have been used in design practice. Recently a totally different approach was proposed by Cho, Lee, and Kim (2011) for the prediction of column axial forces in inverted V-braced frames by explicitly considering brace buckling. The idea proposed in their study is extended to X-braced seismic frames which have structural member configurations and load transfer mechanism different from those of inverted V-braced frames. Especially, a more efficient rule is proposed in combining multi-mode effects on the column axial forces by using the modal-mass based weighting factor. The four methods proposed in this study are evaluated based on extensive inelastic dynamic analysis results.

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

An Analysis on the Stability for Pylon Types of Cable-Stayed Bridge (사장교 주탑 형상에 따른 안정해석)

  • 임정열;윤영만;안주옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.246-252
    • /
    • 2000
  • The nonlinearity of a cable-stayed bridge results in the large displacement of main girder due to a long span, the large axial forces reduce the catenary action of cables and the flexural stiffness. Therefore, the static and dynamic behavior of pylon for a cable-stayed bridge plays an important role in determining its safety. This study was performed to find the behavior of pylon of cable-stayed bridge for the first-order analysis considering of axial load only and for the second-order analysis considering of lateral deflection due to axial load. The axial force and moment values of pylon were different from the results of the first-order analysis and second-order analysis according to pylon shape and cross beam stiffness when the pylon was subjected to earthquake and wind loads. In the second-order analysis, comparing the numerical values of the member forces for the dynamic analysis, types 3 and 4 (A type) were relatively more advantageons types than types 1 and 2 (H type). Considering the stability for pylon of cable-stayed bridge (whole structural system), types 3 and 4 (A type) with pre-buckling of girder were proper types than types 1 and 2 (H type) with buckling of pylon.

  • PDF