• Title/Summary/Keyword: static bending test

Search Result 186, Processing Time 0.025 seconds

Evaluation of Static Strength on Ceramic /Metal Bonded Joints Considering Stress Singularity (응력특이성을 고려한 세라믹/금속 접합재의 정적강도평가)

  • 김기성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • Recently, the cases of using bonded dissimiliar materials which have each of the different components tend to increase for the purpose of developing new materials and using the special objects in the field of industry. Among the cases the strength evaluation of the joining materials of vehicle engine and the structural materials with ceramic/metal bonded joints becomes more important. But the residual stress occurs, because the joining of ceramics and metals is performed in extremely high temperature. It becomes a dominant cause to reduce the strength of the ceramic/metal bonded joints. In this paper, strength evaluation method of ceramic/metal bonded joints considering stress singularity was investigated by boundary element method and 4-point bending test. An advanced method of quantitative strength evaluation for ceramin/metal bonded joints is to be suggested.

  • PDF

A Study on the Estimation of Dynamic Interlaminar Fracture Toughness on CFRP Laminates Plates (CFRP 적층판의 동적 층간파괴인성의 평가법)

  • 김지훈;김영남;판부직규;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.80-91
    • /
    • 1998
  • In this paper, the estimation of dynamic interlaminar fracture toughness on fracture mode II in CFRP(carbon fiber reinforced plastics) laminates in made. Dynamic ENF(End Notched Flexure) apparatus used in this paper is manufactured by suing Split Hopkinson Pressure Bar. The static and impact load history in the CFRP specimen is measured by using manufactured dynamic ENF tester and 3-point bending test is carried out to find the load history. Also dynamic interlaminar fracture toughness can be found by using the J integral obrained from dynamic analysis in consideration of intertia-force effect.

  • PDF

Mechanical Properties of Zelkova Serrata Makino in Accelerated Weathering Test (촉진 열화 느티나무 부재의 역학적 특성)

  • Kim, Gwang-Chul;Park, Chun-Young
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.4
    • /
    • pp.392-397
    • /
    • 2015
  • This study was carried out to analyze the effects on mechanical properties of deteriorated wood member by outdoor condition. The surface color, mechanical properties and structural stability of traditional wooden structures, exposed in water and UV, could be changeable. For the purpose, accelerated weathering test based on outdoor condition was carried out. The weathering time levels were composed 0, 500, 1000, 1,500 and 2,000 hours and mechanical properties were evaluated on each specimen according to weathering time level. Bending properties were decreased on weathering but recovered after 1,000 hours. Fatigue and impact strength were decreased to 1,000 hours and did not changed since then. Abrasion resistance was minimized in 1,000 hours. This results could be utilized for effectively stability management of traditional wooden structures and members.

Experimental study on the fatigue performance of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Jing, Chuanhe;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.229-241
    • /
    • 2021
  • This work focused on aluminum foam sandwich (AFS) with different foam core densities and different face-sheet thicknesses subjected to constant amplitude three-point bending cyclic loading to study its fatigue performance. The experiments were conducted out by a high frequency fatigue test machine named GPS-100. The experimental results showed that the fatigue life of AFS decreased with the increasing loading level and the structure was sensitive to cyclic loading, especially when the loading level was under 20%. S-N curves of nine groups of AFS specimens were obtained and the fatigue life of AFS followed three-parameter lognormal distribution well. AFS under low cyclic loading showed pronounced cyclic hardening and the static strength after fatigue test increased. For the same loading level, effects of foam core density and face-sheet thickness on the fatigue life of AFS structure were trade-off and for the same loading value, the fatigue life of AFS increased with aluminum foam core density or face-sheet thickness monotonously. Core shear was the main failure mode in the present study.

Fire Retardant Treatment to the Plywood with Di-ammonium Phosphate [(NH4)2HPO4] (II) - Effect of Platen Temperature on Bending Strength of Treated Plywoods - (제2인산(第二燐酸) 암모늄에 의(依)한 합판(合板)의 내화처리(耐火處理)(II) - 열판온도(熱板溫度)가 처리합판(處理合板)의 곡강도(曲强度)에 미치는 영향(影響) -)

  • Chung, Woo-Yang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.3-9
    • /
    • 1984
  • This study was carried out to examine the practicality of DAP[$(NH_4)_2HPO_4$] as fire retardant for plywood by static bending test the redried plywoods which had been soaked in 20% $(NH_4)_2HPO_4$ solution. Being hot/cold soaked in the solution for 3/3, 6/3, 9/3 and 12/3 hours and redried by cyclic press-drying method at the platen temp. of 130, 145, 100 and $175^{\circ}C$, the treated plywoods were tested to offer the mechanical data, that is, $S_{pl}$(stress at proportional limit), MOE(modulus of elasticity), MOR(modulus of rupture) and $W_{pl}$(work per unit volume to proportional limit ) in flexure. The results obtained were summarized as follows. 1. $S_{pl}$ of fire retardant treated plywoods ("FRP" would be used hereinafter) decreased as the platen temperature increased, but it was superior to that of non-treated plywoods(Control) at $160^{\circ}C$ or higher. 2. MOE of FRP decreased roughly with the increase of temperature, hut this tendency was not constant. And the value of FRP was higher than that of Control even at $175^{\circ}C$. 3. MOR of FRP showed same temperature-dependent tendency as MOE, but it was influenced more sensitively at the higher temperature. 4. $W_{pl}$ of FRP also decreased gradually with the increase of platen temperature and the value in DAP 9/3 treatment was Jess than 70% of control plywoods. 5. In view of redrying time and mechanical properties, the most reasonable platen temperature for DAP treated FRP was $160^{\circ}C$ in this study.

  • PDF

Damage Behavior and Residual Bending Fatigue Strength of CFRP Composite Laminates Subjected to Impact Loading (충격하중을 받은 CFRP 적층판의 손상거동과 잔류굽힘피로강도)

  • Im, Kwang-Hee;Yang, In-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1836-1842
    • /
    • 1996
  • In this paper, static and fatigue bending strengths of CFRP(carbon fiber reinforced plastic laminates having impact damage(FOD) are evaluated. Composite laminates used for this experiment are CF/EPOXY and CF/PEEK orthotropy laminated plates, which have two-interfaces[${0^0}_4{90^0}_4}$]$_sym$. A steel ball launched by the air gun colides against CFRP laminates to generate impact damages. The damage growth during bending fatigue test is observed by the scanning acoustic microscope(SAM). When the impacted side is compressed, the residual fatigue bending strength of CF/PEEK specimen P is greater that that of CF/EPOXY SPECIMEN B. On the other hand, when the impacted side is in tension, the residual fatigue bending strength of CF/PEEK speicemen P is smaller than that of CF/EPOXY specimen B. In the case of impacted-side compression, fracture is proposed from the transverse crack generated near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-b delamination in the case of impacted-side tension.

Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate (굽힘 압전 복합재료 작동기의 하중 특성)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.

Study on the Effects of the Mounting Direction of Vertically-launched Missiles in Vibration Tests (수직발사 유도탄의 진동시험에서 유도탄 장착방향의 영향에 대한 연구)

  • Lee, Hojun;Kim, Ki-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • Vertically-launched missiles are supported as erected vertically in the vertical launching system of warship, and they should be mounted in the same way when vibration-tested. However, mounting missiles vertically makes a fixture, which is a supporting structure, bulky and heavy so requiring a high-performance exciter. Mounting missiles as laid down horizontally in a vibration test is economical regarding fixture manufacturing and exciter performance, but it makes test results incorrect because the different mounting direction has effects on the test results. A bending moment due to missiles' weight happens to missiles, and resilient mounts, which support missiles in the vertical launch system, deflect differently from the real situation because of the static deflection of these mounts due to missiles' weight. If the resilient mounts supporting missiles have nonlinear force-deflection characteristics, vibration test results become more different from the true results. This paper proposes to support missiles with an additional resilient mount such as a bunge code in order to solve those problems coming from mounting vertically-launched missiles as laid down horizontally in vibration tests. The proposed approach enables to obtain the same test results as in their actual mounting condition even though vertically-launched missiles are mounted in a different direction.

금속재 세미 모노코크 콘형 구조체의 정적 구조 시험

  • Park, Soon-Hong;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.129-142
    • /
    • 2005
  • A semi-monocoque truncated cone structure, which is a main structure for the payload adapter of KSLV-I, was designed. Static test was performed to confirm the reliability of the cone structure under the design loads. Strains and displacements are measured during four load cases; the compressive axial, pure bending, pure shear, and combined loading conditions. The results showed that the cone structure satisfies the design requirements. An equivalent axial load was applied to the cone structure so that the global buckling of the cone structure occurred. The measured buckling load was compared with the predicted one by finite element method. The results show a good agreement.

  • PDF

An Experimental Study on Reinforced Effect Using Double Adhensive Panels in Bridge Deck Slabs (프리케스트판을 이용한 교량상판 단면증설 보강공법에 관한 실험적 연구)

  • 박정기;하경민;지한상;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.791-796
    • /
    • 2000
  • Purpose of this study is to analyze the characteristics and reinforcement effects of restored the RC bridge deck with small precast panel through static load tests and to provide the basic information for the damaged slab decks. In the tests for realizing movement of general RC bridge slabs, 6 samples are prepared and tested. All reinforced samples are restored with 1 or 2-layers precast panels by epoxy mortar. The movement of restored slabs is analyzed and compared with the behavior of non-restored slabs. In result of these tests, tension cracks due to bending moment are show, and after static load test there happens finally a punching shear failure, which is the general type of RC bridge failure. The tests show that restoration of the RC slab results in increasing of loading capacity about 30~50% an restoring panels are stick to slab and moving with slab under loading test.

  • PDF