• Title/Summary/Keyword: static bending strength performance

Search Result 42, Processing Time 0.02 seconds

Dynamic Property of Cross-Laminated Woods Made with Temperate Seven Species

  • GONG, Do-Min;SHIN, Moon-Gi;LEE, Soo-Hyun;BYEON, Hee-Seop;PARK, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • In this study, cross-laminated wood panels were manufactured with four softwoods and three hardwoods with the goal of efficiently predicting the static strength performance using dynamic modulus of elasticity (MOE) and simultaneously revealing the dynamic performance of cross-laminated wood panels. The effect of the density of the species on the dynamic MOE of the laminated wood panels was investigated. Moreover, the static bending strength performance was predicted nondestructively through the correlation regression between the dynamic MOE and static bending strength performance. For the dynamic MOE, the parallel- and cross-laminated wood panels composed of oriental oak showed the highest value, whereas the laminated wood panels composed of Japanese cedar showed the lowest value. In all types of parallel- and cross-laminated wood panels, the density dependence was confirmed, and the extent of the density dependence was found to be greater in the P and C types with perpendicular-direction laminae in the faces than in the P and C types with longitudinal-direction laminae in the faces. Our findings confirmed that a high correlation exists at a significance level of 1% between the dynamic modulus and static bending modulus or bending strength in all types of laminated wood panels, and that the static bending strength performance can be predicted through the dynamic MOE.

Bending Strength of Board Manufactured from Sawdust, Rice Husk and Charcoal (톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 휨성능)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • Purpose of this study is reviewing the use method for the sawdust (sawmilling by-product) and rice husk (Agriculture by-product) by adding charcoal, an eco-friendly material. Mixed composite boards were manufactured with those materials with each density and mixing ratio, and bending performance was investigated. When the addition ratio of sawdust, rice husk and charcoal is 50:20:20 and the resin addition ratio is 10%, as the density of the prepared mixed board ranges from 0.5 g/cm3 to 0.7 g/cm3, the bending strength was 0.42~3.24 N/mm2, dynamic modulus of elasticity was 94.5~888.4 N/mm2, and the static modulus of elasticity was in the range of 31.4~220.7 N/mm2. As the density increased, the bending performance increased, indicating that the density had a significant effect on the bending performance. In a board prepared by setting the density of 0.6 g/cm3, the addition ratio of sawdust to 50%, and the addition ratio of rice husk and charcoal at different ratios, the bending performance showed a tendency to decrease as the addition ratio of charcoal increased. The relationship between the addition ratio of rice husk and charcoal, bending strength, resonance frequency, and dynamic and static bending modulus showed a rather low correlation with the values of the coefficient of determination (R2) of 0.4562, 0.4310, 0.4589, and 0.5847, respectively. Thus, we found that the effect of the addition ratio on the bending performance was small.

Experimental and numerical study on energy absorption of lattice-core sandwich beam

  • Taghipoor, Hossein;Noori, Mohammad Damghani
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.135-147
    • /
    • 2018
  • Quasi-static three-point bending tests on sandwich beams with expanded metal sheets as core were conducted. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLCIT and the results were thoroughly compared with the experimental results. A parametric analysis was performed using a Box-Behnken design (BBD) for the design of experiments (DOE) techniques and a finite element modeling. Then, the influence of the core layers number, size of the cell and, thickness of the substrates was investigated. The results showed that the increase in the size of the expanded metal cell in a reasonable range was required to improve the performance of the structure under bending collapse. It was found that core layers number and size of the cell was key factors governing the quasi-static response of the sandwich beams with lattice cores.

Experimental Study on Static Behavior of Laterally Strengthened Spliced Prestressed Concrete Girder using Bending Moment Connector (휨연결재에 의해 횡방향으로 보강된 분절 프리스트레스트 거더의 정적거동에 관한 실험적 연구)

  • Kim, Jae Heung;Kim, Jang-Ho Jay;Kim, Sung Bae;Yi, Na Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • The main purpose of this study is to investigate the static behavior of spliced prestressed concrete girder with bending moment connector and lateral prestressing. Four (4) spliced girders and one (1) monolithic girder had been fabricated and tested to compare their static behaviors. Same geometry and materials are used to fabricate these spliced and monolithic girders. A monolithic girder and one (1) spliced girder without lateral bending connector are used as control specimens to estimate the performance of three (3) spliced girders with lateral bending connector. Deflections at the middle of girders have been measured for evaluation. Also, strains of the concrete at the middle of span and connection points have been measured. It was found from the result that laterally strengthened spliced girders showed improved ultimate strength but less stiffness compared to the monolithic girder at the ultimate state. Laterally strengthened spliced girder also showed improved strength as well as improved stiffness compared to the spliced girder without lateral strengthening.

Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer

  • Won, Kyung-Rok;Chong, Song-Ho;Hong, Nam-Euy;Kang, Sang-Uk;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.466-473
    • /
    • 2013
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for heat-treated wood under different conditions. The effect of heat treatment on the bending strength and NDE technique using the resonance frequency by impact hammer and force transducer mode for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to MOR. In all conditions, It was found that there were a high correlation at 1% level between dynamic modulus of elasticity and MOR, and static modulus of elasticity and MOR. However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by impact hammer mode is more useful as a nondestructive evaluation method for predicting the MOR of heat-treated wood under different temperature and species conditions.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.

Evaluation of Structural Performance of Joint in Precast Prefabricated Manhole (프리캐스트 조립식 맨홀 접합부의 구조성능 평가)

  • Chung, Chul-Hun;Song, Na-Young
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.48-61
    • /
    • 2011
  • In this study, static tests were done on the joints between precast manholes and the joints between manhole and sewer. The static loading tests in not only elastic range but also ultimate state of model members were carried out to investigate the bond strength and ultimate load of a joint of precast manholes. Specimens were tested in bending, horizontal shear, horizontal shear of circumferencial direction and direct tension. The results of tests indicated good structural performance of the joints between precast manholes and the joints between manhole and sewer.

Effects of Heating Temperature and Time on the Mechanical Properties of Heat-Treated Woods

  • Won, Kyung-Rok;Hong, Nam-Euy;Park, Han-Min;Moon, Sun-Ok;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.168-176
    • /
    • 2015
  • This study was performed to investigate the effects of heat treatment the on mechanical properties of two species of wood under different heating conditions including at $180^{\circ}C$ for 12 h and 24 h, and at $210^{\circ}C$ for 3 h and 6 h. Two species of wood, Pinus densiflora and Larix kaempferi, were exposed to different heat treatments to assess the effects on the volume change, bending properties in static and dynamic mode and compressive strength. The results showed heat treatment caused significant changes in mechanical properties such as the static and dynamic moduli of elasticity ($MOE_d$ and $MOE_s$), and the modulus of rupture (MOR). The volume of the wood after heat treatment decreased as the heating temperature and time were increased. The bending strength performance of the wood after heat treatment decreased as the heating temperature and time were increased. The effect of heat treatment at a high temperature on the bending MOR was greater in both species than that for a long time. However, the compressive strengths of all the heat-treated samples were higher than the control sample. Furthermore, highly significant correlations between $MOE_d$ and MOR, and $MOE_s$ and MOR were found for all heating conditions.

An Experimental Study on the Mechanical Mounting between GFRP Door Impact Beam and Steel Brackets (GFRP 도어 임팩트 빔과 Steel 브래킷의 기계적 결합에 관한 실험적 연구)

  • Ha, Jung-Chan;Shin, Young-cheol;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.103-110
    • /
    • 2021
  • The mounting performance of the GFRP(Glass fiber Reinforced Plastic) beam and the mechanical mounting of the steel bracket was studied to be mounted as a GFRP impact beam on the side door of the passenger car. Moreover, an open-hole tensile test was performed to evaluate breakage tendency based on GFRP stacking conditions. Furthermore, the tightening strength of rivets and bolts was compared using the single lap-shear tension test for the GFRP stacking pattern. Additionally, the GFRP beam and bracket mounting features were designed; moreover, the prototype and bracket were assembled. Additionally, the bracket mounting bending test and the door assembly static bending test were performed to verify the stability of the bracket mounting. In the bracket fastening bending test, no breakage occurred in the connection part between the GFRP beam and the bracket, and it showed 67% (24.4 kN) improved performance compared to steel. In the static bending test of the door assembly, the initial average reaction force increased by 25% compared to the steel, and the performance of all FMVSS-214 regulations was satisfied. The replacement of GFRP impact beams resulted in a 30% weight reduction