• Title/Summary/Keyword: state-space formulas

Search Result 14, Processing Time 0.027 seconds

Optimal Wiener-Hopf Decoupling Controller Formula for State-space Algorithms

  • Park, Ki-Heon;Kim, Jin-Geol
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.471-478
    • /
    • 2007
  • In this paper, an optimal Wiener-Hopf decoupling controller formula is obtained which is expressed in terms of rational matrices, thereby readily allowing the use of state-space algorithms. To this end, the characterization formula for the class of all realizable decoupling controller is formulated in terms of rational functions. The class of all stabilizing and decoupling controllers is parametrized via the free diagonal matrices and the optimal decoupling controller is determined from these free matrices.

On the admissibility condition in the model matching problem

  • Park, Kiheon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.293-299
    • /
    • 1994
  • A new approach to deal with the model matching problem for square plants is suggested. Admissibility conditions of the model matching error are derived in terms of state-space parameters and the derived formulas are exploited to obtain the solution to the model matching problem in H$_{2}$ norm.

  • PDF

Fast analytical estimation of the influence zone depth, its numerical verification and FEM accuracy testing

  • Kuklik, Pavel;Broucek, Miroslav;Kopackova, Marie
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.635-647
    • /
    • 2009
  • For the calculation of foundation settlement it is recommended to take into account so called influence zone inside the subsoil bellow the foundation structure. Influence zone inside the subsoil is the region where the load has a substantial influence on the deformation of the soil skeleton. The soil skeleton is pre-consolidated or over consolidated due to the original geostatic stress state. An excavation changes the original geostatic stress state and it creates the space for the load transferred from upper structure. The theory of elastic layer in Westergard manner is selected for the vertical stress calculation. The depth of influence zone is calculated from the equality of the original geostatic stress and the new geostatic stress due to excavation combined with the vertical stress from the upper structure. Two close formulas are presented for the influence zone calculation. Using ADINA code we carried out several numerical examples to verify the proposed analytical formulas and to enhance their use in civil engineering practice. Otherwise, the FEM code accuracy can be control.

GENERIC SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF A SASAKIAN SPACE FORM

  • Ahn, Seong-Soo;Ki, U-Hang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.215-236
    • /
    • 1994
  • The purpose of the present paper is to study generic submanifolds of a Sasakian space form with nonvanishing parallel mean curvature vector field such that the shape operator in the direction of the mean curvature vector field commutes with the structure tensor field induced on the submanifold. In .cint. 1 we state general formulas on generic submanifolds of a Sasakian manifold, especially those of a Sasakian space form. .cint.2 is devoted to the study a generic submanifold of a Sasakian manifold, which is not tangent to the structure vector. In .cint.3 we investigate generic submanifolds, not tangent to the structure vector, of a Sasakian space form with nonvanishing parallel mean curvature vactor field. In .cint.4 we discuss generic submanifolds tangent to the structure vector of a Sasakian space form and compute the restricted Laplacian for the shape operator in the direction of the mean curvature vector field. As a applications of these, in the last .cint.5 we prove our main results.

  • PDF

Evaluation of the Performance and Reliability of a Real-Time System Using Fuzzy-Random Variables (퍼지-랜덤 변수를 이용한 실시간 제어 시스템의 성능 및 신뢰도 평가기법 연구)

  • 민병조;이석주;김학배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.433-440
    • /
    • 2000
  • To flexibly evaluate performance and reliability of a real-time system which is intrinsically characterized by stringent timing constraints to generate correct responses, we propose fuzzyrandom variables and build a discrete event model embedded with fuzzy-random variables. Also, we adapt fuzzy-variables to a path-space approach, which derives the upper and lower bounds of reliability by using a semi-Markov model that explicitly contains the deadline information. Consequently, we propose certain formulas of state automata properly transformed by fuzzy-random variables, and present numerical examples applying the formulas to RTP(Rapid Thermal Process) to show that a complex system can be properly evaluated based on this model by computer simulation.

  • PDF

Evaluation of the Performance and Reliability of a Real-time Power System Described by a DES Model using Fuzzy-Random Variables (퍼지-랜덤 변수를 이용한 DES 모델링을 통한 실시간 전력 시스템의 성능 및 신뢰도 평가)

  • Min, Byeong-Jo;Lee, Seok-Ju;Kim, Hak-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.363-369
    • /
    • 2000
  • To flexibly evaluate performance and reliability of an electric power system in the aspect of the real-time system which is intrinsically characterized by stringent timing constraints fails catastrophically if its control input is not updated by its digital controller computer within a certain time limit called the hard deadline, we propose fuzzy-random variables and build a discrete event model embedded with fuzzy-random variables. Also, we adapt fuzzy-variables to a path-space approach, which derives the upper and lower bounds of reliability by using a semi-Markov model that explicitly contains the deadline information. Consequently, we propose certain formulas of state automata properly transformed by fuzzy-random variables, and present numerical examples applying the formulas as well.

  • PDF

H(sub)$\infty$ Design for Decoupling Controllers Based on the Two-Degree-of-Freedom Standard Model Using LMI Methods (LMI 기법을 이용한 2자유도 표준모델에 대한 비결합 제어기의 H(sub)$\infty$ 설계)

  • Gang, Gi-Won;Lee, Jong-Sung;Park, Kiheon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.183-192
    • /
    • 2001
  • In this paper, the decoupling H(sub)$\infty$ controller which minimizes the maximum energy in the output signal is designed to reduce the coupling properties between the input/output variables which make it difficult to control a system efficiently. The state-space formulas corresponding to the existing transfer matrix formulas of the controller are derived for computational efficiency. And for a given decoupling $H_{\infty}$ problem, an efficient method are sought to find the controller coefficients through the LMI(Linear Matrix Inequalities) method by which the problem is formulated into a convex optimization problem.

  • PDF

Improvement of transmission-line-based fault locating for typical traveling-wave accelerator with constant-gradient structures

  • T.N. Hu;Y.F. Zeng;K. Peng;H. Hu;H.M. Wang;K.F. Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2011-2018
    • /
    • 2024
  • Since RF breakdown is one of the primary limitations to improving the performances of RF accelerators, extensive efforts have been dedicated to locating the breakdowns. However, most existing methods rely on specialized techniques, resulting in high financial burdens. Although the method based on transient response of transmission line (TL) is suitable for facilities with sporadic recoverable breakdowns, practical operations are susceptible to notable errors. This study revisits the fundamental theories of lossless TL and investigates the wave process to understand the characteristics of the reversed pulse induced by the breakdowns. By utilizing steadystate response of the TL and employing phasor method, we derive analytical formulas to determine the exact location of breakdowns within the faulty cell for constant-gradient TW accelerator. Furthermore, the derived formulas demonstrate their independence from RF phase, thereby distinguishing them from traditional phasebased methods. Additionally, experimental validations are conducted at the HUST injector, and the results confirm the consistency of the analysis. Thus, the proposed method represents a promising improvement over the TL-based approaches and serves as a valuable complement to current techniques. Importantly, this method demonstrates particular advantages for constructed TW accelerators seeking to achieve a balance among high performance, low costs, and compact layouts.

Generalized Computational Nodes for Pseudospectral Methods

  • Kim, Chang-Joo;Park, Soo Hyung;Jung, Sung-Nam;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.183-189
    • /
    • 2014
  • Pseudo-spectral method typically converges at an exponential rate. However, it requires a special set of fixed collocation points (CPs) to get highly accurate formulas for partial integration and differentiation. In this study, computational nodes for defining the discrete variables of states and controls are built independently of the CPs. The state and control variables at each CP, which are required to transcribe an NOCP into the corresponding NLP, are interpolated, using those variables allocated at each node. Additionally, Lagrange interpolation and spline interpolation are investigated, to provide a guideline for selecting a favorable interpolation method. The proposed techniques are applied to the solution of an NOCP using equally spaced nodes, and the computed results are compared to those using the standard PS approach, to validate the usefulness of the proposed methods.

Generic submanifolds of a quaternionic kaehlerian manifold with nonvanishing parallel mean curvature vector

  • Jung, Seoung-Dal;Pak, Jin-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.339-352
    • /
    • 1994
  • A sumbanifold M of a quaternionic Kaehlerian manifold $\tilde{M}^m$ of real dimension 4m is called a generic submanifold if the normal space N(M) of M is always mapped into the tangent space T(M) under the action of the quaternionic Kaehlerian structure tensors of the ambient manifold at the same time.The purpose of the present paper is to study generic submanifold of quaternionic Kaehlerian manifold of constant Q-sectional curvature with nonvanishing parallel mean curvature vector. In section 1, we state general formulas on generic submanifolds of a quaternionic Kaehlerian manifold of constant Q-sectional curvature. Section 2 is devoted to the study generic submanifolds with nonvanishing parallel mean curvature vector and compute the restricted Laplacian for the second fundamental form in the direction of the mean curvature vector. As applications of those results, in section 3, we prove our main theorems. In this paper, the dimension of a manifold will always indicate its real dimension.

  • PDF