• Title/Summary/Keyword: state variables equation

Search Result 197, Processing Time 0.024 seconds

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

Error Analysis of Initial Fine Alignment for Non-leveling INS (경사각을 갖는 관성항법시스템 초기 정밀정렬의 오차 분석)

  • Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.595-602
    • /
    • 2008
  • In this paper, performance of the initial alignment for INS whose attitude is not leveled is investigated. Observability of the initial alignment filter is analyzed and estimation errors of the estimated state variables are derived. First, the observability is analyzed using the rank test of observability matrix and the normalized error covariance of the Kalman filter based on the 10-state model. In result, it can be seen that the accelerometer biases on horizontal axes are unobservable. Second, the steady-state estimation errors of the state variables are derived using the observability equation. It is verified that the estimates of the state variables have errors due to the unobservable state variables and the non-leveling tilt angles of a vehicle containing the INS. Especially, this paper shows that the larger the tilt angles of the vehicle are, the larger the estimation errors corresponding to the sensor biases are. Finally, it is shown that the performance of the 8-state model excepting the accelerometer biases on horizontal axes is better than that of the 10-state model in the initial alignment by simulation.

A Study on the Design of Estimator for Velocity Control of Electro-hydraulic Servo System (유압 서보시스템의 속도제어를 위한 관측기 설계에 관한 연구)

  • Song, Chang-Seop;Yun, Jang-Sang;Shin, Dae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.64-72
    • /
    • 1991
  • This paper deals with the state estimator and controller. All state variables' feedback in the system were used to improve electro hydraulic servo sysem were used to improve electro hydraulic servo system's responese charact- eristics. Many gains of the state variables'and estimator's are produced by the algebraic Riccati equation, and every state variables'optimal gain and estimator gain is selected by trial and error method. For the designed estimator performance's examination, this paper simulate the time response for the step input, the reduced velocity output in subjected to load torque, and the time response for the step input in changing the inertiamoment.

  • PDF

Analysis of Output Irregularity from the Transient Behavior of Bundle in a Flow Field (유동계 내 집속체의 과도적 거동에 따른 출력 불균제 해석)

  • Huh Y.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.965-968
    • /
    • 2005
  • Roll drafting operation causes variations in the linear density of bundles because the bundle flow cannot be controlled completely by roll pairs. Defects occurring in this operation bring about many problems successively in the next processes. In this paper, we attempt to analyze the draft dynamics and the linear density irregularity based on the governing equation of a bundle motion that has been suggested in our previous studies. For analyzing the dynamic characteristics of the roll drafting operation, it is indispensable to investigate a transient state in time domain before the bundle flux reaches a steady state. However, since governing equations of bundle flow consisting of continuity and motion equations turn out to be nonlinear, and coupled between variables, the solutions for a transient state cannot be obtained by an analytical method. Therefore, we use the Finite Difference Method(FDM), particularly, the FTBS(Forward-Time Backward-Space) difference method. Then, the total equations system yields to an algebraic equations system and is solved under given initial and boundary conditions in an iterative fashion. From the simulation results, we confirm that state variables show different behavior in the transient state; e.g., the velocity distribution in the flow field changes more quickly the linear density distribution. During a transient flow in a drafting zone, the output irregularity is influenced differently by the disturbances, e.g., the variation in input bundle thickness, the drafting speed, and the draft ratio.

  • PDF

Estimation of External Forces and Current Variables in Sea Trial by Using the Estimation-Before-Modeling Method (모델링 전 추정기법을 이용한 조종시운전시의 외력 및 조류 변수 추정)

  • H.K. Yoon;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.30-38
    • /
    • 2001
  • The current is considered in the conventional manoeuvering equation. This equation is represented as the nonlinear state and measurement equations in which external forces and the direction and the velocity of current are augmented as that variables. The external forces are modeled as the third-order Gauss-Markov processes and the direction and the velocity of current are assumed to be constant. The augmented state variables are estimated with extended Kalman-Bucy filter and the fixed-interval smoother. While Hwang estimated motion state variables, hydrodynamic coefficients and the current variables simultaneously by using extended Kalman filter, external forces of surge, sway and yaw and the direction and the velocity of current are the only parameters to be estimated in the estimation-before-modeling method. The current variables are satisfactorily estimated in simulation process where the measurement noise is present.

  • PDF

Viscoelastic constitutive modeling of asphalt concrete with growing damage

  • Lee, Hyun-Jong;Kim, Y. Richard;Kim, Sun-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.225-240
    • /
    • 1999
  • This paper presents a mechanistic approach to uniaxial viscoelastic constitutive modeling of asphalt concrete that accounts for damage evolution under cyclic loading conditions. An elasticviscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. The time-dependent damage growth in asphalt concrete is modeled by using a damage parameter based on a generalization of microcrack growth law. Internal state variables that describe the hysteretic behavior of asphalt concrete are determined. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode and then transformed to a controlled-stress constitutive equation by simply replacing physical stress and pseudo strain with pseudo stress and physical strain. Tensile uniaxial fatigue tests are performed under the controlled-strain mode to determine model parameters. The constitutive equations in terms of pseudo strain and pseudo stress satisfactorily predict the constitutive behavior of asphalt concrete all the way up to failure under controlled-strain and -stress modes, respectively.

Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State (수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산)

  • 김민수;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2189-2205
    • /
    • 1991
  • Thermodynamic properties of binary nonazeotropic refrigerant mixtures are estimated by using a modified Carnhan-Starling equation of state. In this study, pure component refrigerants such as R14, R23, R13, R13 B1, R22, R12, R134a, R152a, R142b, RC318, R114, R11, R123 and R113 are chosen and the thermodynamic properties of enthalpy and entropy are calculated in terms of relevant variables. The modified Carnahan-Starling equation of state is compared with the carnahan-Staring-De Santis equation of sate. Results show that the relative errors become slightly smaller with the equation of state proposed in this study. Correlations are obtained for the mixtures of which the vapor liquid equilibruim data are available to us in the literature. Those mixtures are R14/R23, R23/R12, R13/R12, R13/R11, R13B1/R22, R13B1/RC318, R12/RC138, R12/R114 and R12/R11. The binary interaction coefficients are found under the condition of minimizing the pressure deviations at the vapor liquid equiblibrium state and the estimation of the vapor liquid equilibrium for the refrigerant mixtures is done. Pressure-enthalpy and temperature-entropy diagrams are plotted for the refrigerant mixtures of specific composition.

A new Dynamic Switching Function for Output feedback Variable Structure Control (출력궤환가변구조제어를 위한 동적스위칭함수의 제안과 응용)

  • 이기상;송명현;조상호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.706-717
    • /
    • 1991
  • In order to remove the assumption of full state availability which is one of the major difficulties with the practical realization of variable structure control systems,a new switching function with a dynamic structure is proposed. And the control performances of the output feedback variable structure control systems with the dynamic switching function are evaluated through simulation studies. The proposed dynamic switching function is driven by small number of measured output and input variables while conventional static switching function requires full state information. Therefore, the proposition of the dynamic swiching function makes practical implementation of output feedback variable structure control scheme possible for the systems with unmeasurable state variables, high order systems and large scale systems that the conventional variable structure control schemes with static switching function cannot be applied. In the variable structure control systems with the dynamic switching function, desired control performance can be guaranteed by proper choice of design parameters such as poles of switching function dynamic equation and switching control gains even though small number of measured output and input variables are provided as shown in simulation resuls.

  • PDF

Development of Multiple Regression Equation for Estimation of Suspended Solids in Unmeasurable Watershed (미계측 유역의 부유물질 산정을 위한 다중회귀식 개발)

  • Choi, Han-Kyu;Park, Jae-Yong;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.119-127
    • /
    • 2006
  • The purpose of this study is to present quantitatively the influence of variables that had the largest effect on the changes in suspended solids(SS), which would cause turbid water phenomenon, among water quality factors of the non-point pollution source, and then to develop a multiple regression equation of SS and predict the water quality of ungaged watersheds so as to provide basic data to establish efficient management plans for SS which flow in rivers and lakes. To identify the correlation of SS with the amount of rainfall and the state of land use, a simple correlation analysis and a simple regression analysis were conducted respectively. Finally, a multiple regression analysis was conducted to provide that SS were set as dependent variables while the amount of rainfall, paddy fields and dry fields were set as independent variables. As a result, the amount of rainfall had the most significant influence on changes in SS, followed by dry fields and paddy fields. In addition, the multiple regression equation was developed to predict SS in unmeasurable watersheds.

  • PDF

Analysis of Cold Gas Flow in Puffer Type GCB Considering the Real Gas Property of $SF_6$ ($SF_6$ 가스의 실제 기체특성을 고려한 파퍼식 가스차단기 내의 냉가스 유동해석)

  • 김홍규;정진교;박경엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • To analyze the performance of the gas circuit breaker(GCB), the flow field variables such as temperature, pressure and density should be evaluated accurately In the puffer chamber of puffer type GCB, the pressure rise may Exceed 20 bar and in this range of high pressure, $SF_6$ gas deviates the ideal gas property. Therefore, the real gas property of $SF_6$ should be taken into consideration for the accurate analysis of flow field. This paper presents the analysis technique of cold gas flow in GCB employing the real gas state equation of SF6. The FVFLIC method is Employed to solve the axisymmetric Euler equation. To reduce the computational effort of real gas state equation, the relationship between density and pressure is approximated by the polynomial at the temperature of 300K. The proposed method is applied to the test GCB model and simulation results show good agreement with the experimental ones.