• 제목/요약/키워드: state trajectory

검색결과 281건 처리시간 0.022초

Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris

  • Huang, Peng;Wang, Feng;Fu, Anmin;Gu, Ming
    • Wind and Structures
    • /
    • 제22권1호
    • /
    • pp.17-41
    • /
    • 2016
  • To address the uncertainty of the flight trajectories caused by the turbulence and gustiness of the wind field over the roof and in the wake of a building, a 3-D probabilistic trajectory model of flat-type wind-borne debris is developed in this study. The core of this methodology is a 6 degree-of-freedom deterministic model, derived from the governing equations of motion of the debris, and a Monte Carlo simulation engine used to account for the uncertainty resulting from vertical and lateral gust wind velocity components. The influence of several parameters, including initial wind speed, time step, gust sampling frequency, number of Monte Carlo simulations, and the extreme gust factor, on the accuracy of the proposed model is examined. For the purpose of validation and calibration, the simulated results from the 3-D probabilistic trajectory model are compared against the available wind tunnel test data. Results show that the maximum relative error between the simulated and wind tunnel test results of the average longitudinal position is about 20%, implying that the probabilistic model provides a reliable and effective means to predict the 3-D flight of the plate-type wind-borne debris.

이산 비선형 시스템에 대한 유한 임펄스 응답 고정 시간 지연 평활기 (A Finite Impulse Response Fixed-lag Smoother for Discrete-time Nonlinear Systems)

  • 권보규;한세경;한수희
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.807-810
    • /
    • 2015
  • In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

Spline parameterization based nonlinear trajectory optimization along 4D waypoints

  • Ahmed, Kawser;Bousson, Kouamana;Coelho, Milca de Freitas
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.391-407
    • /
    • 2019
  • Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.

언밸런스 방지를 위한 유압실린더의 궤적 추종 제어 (Trajectory Tracking Control of Hydraulic Cylinder Preventing from the Unbalance State)

  • 최종환
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.103-109
    • /
    • 2008
  • The work to raise the bridge plate by using two hydraulic cylinders is very dangerous when generating the unbalance state between cylinders. For solving this problem, one cylinder is forced to follow the trajectory of another cylinder instead of applying the same trajectory to two cylinders at once. In this paper, the control method for dynamic stable on lifting the bridge plate is proposed. The simulation model is derived by using commercial software, AMESim and MatLab/simulink. The PID controller is designed on one cylinder for following the reference trajectory and the adaptive controller is designed on another cylinder for tracking the displacement of one cylinder. The performance improvement is shown by comparing the simulation results through computer simulation.

  • PDF

DTW와 Kalman Filter를 결합한 비행표적의 광학추적 방법 (The Optical Tracking Method of Flight Target using Kalman Filter with DTW)

  • 장석원
    • 한국항행학회논문지
    • /
    • 제25권3호
    • /
    • pp.217-222
    • /
    • 2021
  • EOTS(electro-optical tracking system)는 유도무기의 성능 평가를 위해 유도무기를 추적하여 영상을 획득하는데 활용되고 있다. 유도무기에 대한 추적을 잃어버렸을 경우 유도무기가 매우 빠르게 비행하기 때문에 운용자가 이를 다시 포착하는 것은 거의 불가능하다. 레이더나 텔레메트리 데이터를 활용하여 재 포착 하는 방법이 활용되고 있으나 데이터를 실시간으로 수신할 수 있는 통신망의 설치가 수반되어야하기 때문에 장소에 대한 제약이 따른다. 하지만 유도무기 비행시험 수행 시 계산되는 예상 궤적은 실시간으로 수신할 필요 없이 저장해두었다가 사용할 수 있기 때문에 통신망 설비와 관계없이 활용이 가능하다. 본 논문에서는 미리 알고 있는 비행체의 예상 궤적을 활용하여 비행체를 잃어버렸을 시 비행체의 위치를 예상하는 방법을 제안한다. DTW (dynamic time warping)를 통해 예상궤적과 추적궤적을 비교하여 비행체의 각속도를 추정하고 이를 Kalman Filter의 보정단계에서 관측 값으로 활용하여 비행체의 다음 상태를 예측한다. 제안한 방법의 타당성을 실제 비행체 궤적에 적용하여 검증하였다.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측 (PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS)

  • 조재현;안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

불확실 일반 선형 시스템의 레귤레이션 제어를 위한 사전 제어 성능을 갖는 개선된 연속 적분 가변구조 시스템 (An Improved Continuous Integral Variable Structure Systems with Prescribed Control Performance for Regulation Controls of Uncertain General Linear Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1759-1771
    • /
    • 2017
  • In this paper, an improved continuous integral variable structure systems(ICIVSS) with the prescribed control performance is designed for simple regulation controls of uncertain general linear systems. An integral sliding surface with an integral state having a special initial condition is adopted for removing the reaching phase and predetermining the ideal sliding trajectory from a given initial state to the origin in the state space. The ideal sliding dynamics of the integral sliding surface is analytically obtained and the solution of the ideal sliding dynamics can predetermine the ideal sliding trajectory(integral sliding surface) from the given initial state to the origin. Provided that the value of the integral sliding surface is bounded by certain value by means of the continuous input, the norm of the state error to the ideal sliding trajectory is analyzed and obtained in Theorem 1. A corresponding discontinuous control input with the exponential stability is proposed to generate the perfect sliding mode on the every point of the pre-selected sliding surface. For practical applications, the discontinuity of the VSS control input is approximated to be continuous based on the proposed modified fixed boundary layer method. The bounded stability by the continuous input is investigated in Theorem 3. With combining the results of Theorem 1 and Theorem 3, as the prescribed control performance, the pre specification on the error to the ideal sliding trajectory is possible by means of the boundary layer continuous input with the integral sliding surface. The suggested algorithm with the continuous input can provide the effective method to increase the control accuracy within the boundary layer by means of the increase of the $G_1$ gain. Through an illustrative design example and simulation study, the usefulness of the main results is verified.

Trajectory Optimization for a Supersonic Air-Breathing Missile System Using Pseudo-Spectral Method

  • Park, Jung-Woo;Tahk, Min-Jea;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.112-121
    • /
    • 2009
  • This paper deals with supersonic air-breathing missile system. A supersonic air-breathing missile system has very complicated and incoherent thrust characteristics with respect to outer and inner environment during operation. For this reason, the missile system has many maneuver constraints and is allowed to operate within narrow flight envelope. In this paper, trajectory optimization of the missile is accomplished. The trajectory optimization problem is formulated as a discrete parameter optimization problem. For this formulation, Legendre Pseudo-Spectral method is introduced. This method is based on calculating the state and control variables on Legendre-Gauss-Lobatto (LGL) points. This approach helps to find approximated derivative and integration quantities simply. It is shown that, for this trajectory optimization, trend analysis is performed from thrust characteristics on various conditions so that the trajectory optimization is accomplished with fine initial guess with these results.

모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어 (A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller)

  • 김승우;서기성;조영완
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.