• Title/Summary/Keyword: state trajectory

Search Result 281, Processing Time 0.024 seconds

Trajectory Tracking Control of Pneumatic Artificial Muscle Driving Apparatus based on the Linearized Model (공압 인공근육 구동장치의 선형화 모델 기반 궤적추적제어)

  • Jang, J.S.;Yoo, W.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • In this study, a position trajectory tracking control algorithm is proposed for a pneumatic artificial muscle driving apparatus composed of a actuator which imitates the muscle of human, a position sensor and a control valve. The controller applied to the driving apparatus is composed of a state feedback controller and disturbance observer. The feedback controller which feeds back position, velocity and acceleration is derived from the linear model of pneumatic artificial muscle driving apparatus. The disturbance observer is designed to improve trajectory tracking performance and to reduce the effect of model discrepancy. The effectiveness of the designed controller is proved by experiments and the experimental results show that the pneumatic artificial muscle driving apparatus with the proposed control algorithm tracks given position reference inputs accurately.

  • PDF

OPTIMIZATION MODEL AND ALGORITHM OF THE TRAJECTORY OF HORIZONTAL WELL WITH PERTURBATION

  • LI AN;FENG ENMIN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.391-399
    • /
    • 2006
  • In order to solve the optimization problem of designing the trajectory of three-dimensional horizontal well, we establish a multi-phase, nonlinear, stochastic dynamic system of the trajectory of horizontal well. We take the precision of hitting target and the total length of the trajectory as the performance index. By the integration of the state equation, this model can be transformed into a nonlinear stochastic programming. We discuss here the necessary conditions under which a local solution exists and depends in a continuous way on the parameter (perturbation). According to the properties we propose a revised Hooke-Jeeves algorithm and work out corresponding software to calculate the local solution of the nonlinear stochastic programming and the expectancy of the performance index. The numerical results illustrate the validity of the proposed model and algorithm.

Automatic Performance Tuning of PID Trajectory Tracking Controller for Robotic Systems (로봇 시스템에 대한 PID 궤적추종 제어기의 자동 성능동조)

  • 최영진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.510-518
    • /
    • 2004
  • The PID trajectory tracking controller for robotic systems shows performance limitation imposed by inverse dynamics according to desired trajectory. Since the equilibrium point can not be defined for the control system involving performance limitation, we define newly the quasi-equilibrium region as an alternative for equilibrium point. This analysis result of performance limitation can guide us the auto-tuning method for PID controller. Also, the quasi-equilibrium region is used as the target performance of auto-tuning PID trajectory tracking controller. The auto-tuning law is derived from the direct adaptive control scheme, based on the extended disturbance input-to-state stability and the characteristics of performance limitation. Finally, experimental results show that the target performance can be achieved by the proposed automatic tuning method.

Trajectory Tracking Control System Design of Mobile Robot Based on WIPDC and ISMC (하중적분 PDC와 ISMC를 이용한 이동 로봇의 궤도 추적 제어 시스템)

  • Baek, Du-San;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1337-1338
    • /
    • 2015
  • In this paper, a new control technique using WIPDC(Weighted Integral Parallel Distributed Compensation) and ISMC(Integral Sliding Mode Control) is proposed for high performance and robust trajectory tracking control of a wheeled mobile robot. The WIPDC reduces the steady-state error by adding a weighted integral controller to the PDC. So, the trajectory tracking control using the WIPDC can obtain more accurate control performance than the PDC. And the ISMC based control input gives the mobile robot to preserve the system dynamics controlled by the WIPDC control input in spite of external disturbances. Therefore, the proposed control method shows a robust and precise trajectory tracking performance.

  • PDF

Trajectory Tracking Control of a Boom.Arm System of Hydraulic Excavator Using Disturbance Observer (외란관측기를 이용한 유압굴삭기 붐.아암 시스템의 궤적추적제어)

  • Cho S.H.;Ahn G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • This paper deals with the issue of trajectory tracking control of a hydraulic excavator using disturbance observer in order to compensate external disturbances occuring from coupling between attachment, asymmetry of a single rod cylinder, and deadzone of main control valve. Disturbance compensation control system with disturbance observer has been constructed for the boom and arm respectively. Simulation results were compared with experimental results to validate the computer simulation system of hydraulic excavator itself. Computer simulation shows that disturbance compensation control is effective for compensating system nonlinearity and thus improves positioning accuracy and trajectory tracking performance. Steady state error has been decreased by adding PI controller to this control scheme.

  • PDF

Robust Trajectory Tracking Control of Mecanum Wheeled AGV Using State Space Disturbance Observer Based Impedance Control and ISMC (상태 공간 외란관측기 기반의 임피던스 제어와 ISMC를 이용한 메카넘 휠 AGV의 강인 궤도 추적 제어)

  • Hyoseok Cheon;Seungkyu Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Auto Guided Vehicle (AGV) equipped with mecanum wheels can move in all directions, unlike ordinary wheeled AGVs. In this paper, we propose a robust trejectory tracking control method for the mecanum wheeled AGVs in the presence of disturbances. It is constructed by combining impedance control with Integral Sliding Mode Control (ISMC), which shows robust performance against disturbances, and adding a disturbance observer (DOB) that estimates and removes disturbances. Simulation result using MATLAB/SIMULINK shows that the proposed control method has robust performance in tracking the reference trajectory under the circumstance with disturbance. The control performance is further improved when the disturbance observer is additionally used. In addition, the performance of the proposed control method was verified through experiment. It shows the result of tracking the set trajectory well.

Mid-course Trajectory Optimization for Boost-Glide Missiles Based on Convex Programming (컨벡스 프로그래밍을 이용한 추진-활공 유도탄의 중기궤적 최적화)

  • Kwon, Hyuck-Hoon;Hong, Seong-Min;Kim, Gyeong-Hun;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Mid-course trajectory of the missiles equipped with seeker should be designed to detect target within FOV of seeker and to maximize the maneuverability at the point of transition to terminal guidance phase. Because the trajectory optimization problems are generally hard to obtain the analytic solutions due to its own nonlinearity with several constraints, the various numerical methods have been presented so far. In this paper, mid-course trajectory optimization problem for boost-glide missiles is calculated by using SOCP (Second-Order Cone Programming) which is one of convex optimization methods. At first, control variable augmentation scheme with a control constraint is suggested to reduce state variables of missile dynamics. And it is reformulated using a normalized time approach to cope with a free final time problem and boost time problem. Then, partial linearization and lossless convexification are used to convexify dynamic equation and control constraint, respectively. Finally, the results of the proposed method are compared with those of state-of-the-art nonlinear optimization method for verification.

Triangulation Based Skeletonization and Trajectory Recovery for Handwritten Character Patterns

  • Phan, Dung;Na, In-Seop;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.358-377
    • /
    • 2015
  • In this paper, we propose a novel approach for trajectory recovery. Our system uses a triangulation procedure for skeletonization and graph theory to extract the trajectory. Skeletonization extracts the polyline skeleton according to the polygonal contours of the handwritten characters, and as a result, the junction becomes clear and the characters that are touching each other are separated. The approach for the trajectory recovery is based on graph theory to find the optimal path in the graph that has the best representation of the trajectory. An undirected graph model consisting of one or more strokes is constructed from a polyline skeleton. By using the polyline skeleton, our approach accelerates the process to search for an optimal path. In order to evaluate the performance, we built our own dataset, which includes testing and ground-truth. The dataset consist of thousands of handwritten characters and word images, which are extracted from five handwritten documents. To show the relative advantage of our skeletonization method, we first compare the results against those from Zhang-Suen, a state-of-the-art skeletonization method. For the trajectory recovery, we conduct a comparison using the Root Means Square Error (RMSE) and Dynamic Time Warping (DTW) in order to measure the error between the ground truth and the real output. The comparison reveals that our approach has better performance for both the skeletonization stage and the trajectory recovery stage. Moreover, the processing time comparison proves that our system is faster than the existing systems.

The Trajectory of University Science Parks (USPs) in China: Institutional Evolution and Assessment

  • Su, De-Jin;Wu, Bei;Sohn, Dong-Won;Zhou, Da-Yong
    • STI Policy Review
    • /
    • v.7 no.2
    • /
    • pp.16-34
    • /
    • 2016
  • This study aims to identify the chronological trajectory of university science parks (USPs) in China and to discuss the roles of government-driven science and technology (S&T) policies in the development of USPs and the future directions of these entities. Our study shows that USPs in China have undergone two development waves: The first from the late 1980s to the late 1990s, when research universities expected to directly participate in economic activities, and the second from 2000 when the Ministry of Science and Technology (MOST) and the Ministry of Education (MOE) jointly enacted the Proposed Regulation of State-level USPs Management to guide and regulate the development of USPs. The development trajectory highlights that USPs are effective platforms that link scientific research, knowledge spillovers and industrial system. However, Chinese USPs still need to confront some conundrums which may influence the processes and outcomes of UILs. Finally, we also summarize the major issues inherent in the development of USPs to guide policymakers to enact more effective policies.

Continuous Speech Recognition based on Parmetric Trajectory Segmental HMM (모수적 궤적 기반의 분절 HMM을 이용한 연속 음성 인식)

  • 윤영선;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 2000
  • In this paper, we propose a new trajectory model for characterizing segmental features and their interaction based upon a general framework of hidden Markov models. Each segment, a sequence of vectors, is represented by a trajectory of observed sequences. This trajectory is obtained by applying a new design matrix which includes transitional information on contiguous frames, and is characterized as a polynomial regression function. To apply the trajectory to the segmental HMM, the frame features are replaced with the trajectory of a given segment. We also propose the likelihood of a given segment and the estimation of trajectory parameters. The obervation probability of a given segment is represented as the relation between the segment likelihood and the estimation error of the trajectories. The estimation error of a trajectory is considered as the weight of the likelihood of a given segment in a state. This weight represents the probability of how well the corresponding trajectory characterize the segment. The proposed model can be regarded as a generalization of a conventional HMM and a parametric trajectory model. The experimental results are reported on the TIMIT corpus and performance is show to improve significantly over that of the conventional HMM.

  • PDF