DOI QR코드

DOI QR Code

Robust Trajectory Tracking Control of Mecanum Wheeled AGV Using State Space Disturbance Observer Based Impedance Control and ISMC

상태 공간 외란관측기 기반의 임피던스 제어와 ISMC를 이용한 메카넘 휠 AGV의 강인 궤도 추적 제어

  • Hyoseok Cheon (Electrical Engineering, Changwon National University) ;
  • Seungkyu Park (Electrical Engineering, Changwon National University)
  • Received : 2022.12.29
  • Accepted : 2023.02.20
  • Published : 2023.05.31

Abstract

Auto Guided Vehicle (AGV) equipped with mecanum wheels can move in all directions, unlike ordinary wheeled AGVs. In this paper, we propose a robust trejectory tracking control method for the mecanum wheeled AGVs in the presence of disturbances. It is constructed by combining impedance control with Integral Sliding Mode Control (ISMC), which shows robust performance against disturbances, and adding a disturbance observer (DOB) that estimates and removes disturbances. Simulation result using MATLAB/SIMULINK shows that the proposed control method has robust performance in tracking the reference trajectory under the circumstance with disturbance. The control performance is further improved when the disturbance observer is additionally used. In addition, the performance of the proposed control method was verified through experiment. It shows the result of tracking the set trajectory well.

Keywords

Acknowledgement

This work was supported by research fund from Changwon National University in 2021-2022

References

  1. B. Wu, D. Qin, Y. Chen, T. Cao, and M. Wu, "Structure design of an omni-directional wheeled handling robot," Journal of Physics: Conference Series, vol. 1885, no. 5, 2021, DOI: 10.1088/1742-6596/1885/5/052013. 
  2. J. M. Park and K. S. Park, "Position Compensation for Automatic Guided Vehicle Using Ultrasonic and Infrared Sensors," Journal of Engineering Research, 1996, http://oak.ulsan.ac.kr/handle/2021.oak/3981. 
  3. I. Oh, G. Kwon, and H. Yang, "A Study of Position Estmation Considering Wheel Slip of Mecanum Wheeled Mobile Robot," Journal of the KIMST, vol. 22, no. 3, pp. 401-407, 2019, DOI: 10.9766/KIMST.2019.22.3.401. 
  4. R. Rojas, "A short history of omnidirectional wheels," [Online], http://robocup.mi.fu-berlin.de/buch /shortomni.pdf. 
  5. O. Diegel, A. Badve, G. Bright, J. Potgieter, and S. Tlale, "Improved Mecanum wheel design for omni-directional robots," 2002 Australasian Conference on Robotics and Automation, Auckland, Australia, pp. 117-121, 2002, [Online], http://ftp.mi.fu-berlin.de/pub/Rojas/omniwheel/Diegel-Badve-Bright-Potgieter-Tlale.pdf. 
  6. F. Adacaiti and I. Doroftei, "Practical applications for mobile robots based on Mecanum wheels - a systematic survey," The Romanian Review Precision Mechanics, Optics & Mechatronics, no. 40, 2011, https://www.incdmtm.ro/editura/documente/pag.%2021-29.%20Practical%20Applications%20for%20Mobile%20Robots%20based%20on%20Mecanum%20Wheels%20-%20A%20Systematic%20Survey.pdf. 
  7. A. Gfrerrer, "Geometry and kinematics of the mecanum wheel," Computer Aided Geometric Design, vol. 25, no. 9, pp. 784-791, Dec., 2008, DOI: 10.1016/j.cagd.2008.07.008. 
  8. S. D. Kamdar, "Design and manufacturing of a Mecanum wheel for the magnetic climbing robot," Master's thesis, Embry-Riddle Aeronautical University, Florida, USA, 2015, [Online], https://commons.erau.edu/edt/269. 
  9. J. E. M. Salih, M. Rizon, S. Yaacob, A. H. Adom, and M. R. Mamat, "Designing Omni-directional mobile robot with Mecanum wheel," 1st International Workshop on Artificial Life and Robotics, pp. 101-106. 2005, DOI: 10.3844/ajassp.2006.1831.1835. 
  10. Y. Jia, X. Song, and S. S.-D. Xu, "Modeling and motion analysis of four-Mecanum wheel omni-directional mobile platform," International Conference on Automatic Control (CACS), Nantou, Taiwan, 2013, DOI: 10.1109/CACS.2013.6734155. 
  11. H. Taheri, B. Qiao, and N. Ghaeminezhad, "Kinematic model of a four Mecanum wheeled mobile robot," International Journal of Computer Applications (0975-8887), vol. 113, no. 3. Mar., 2015, DOI: 10.5120/19804-1586. 
  12. S. Soni, T. Mistry, and J. Hanath, "Experimental analysis of Mecanum wheel and omni Wheel," IJISET - International Journal of Innovative Science, Engineering & Technology, vol. 1, no. 3, May, 2014, [Online], http://www.academia.edu/85546609/Experimental_Analysis_of_Mecanum_wheel_and_Omni_wheel. 
  13. B. Chu, "Performance evaluation of Mecanum wheeled omnidirectional mobile robot," 31st ISARC, Sydney, Australia, pp. 784-789, 2014, DOI: 10.22260/ISARC2014/0106. 
  14. M. Abdelrahman, I. Zeidis, O. Bondarev, B. Adamov, F. Becker, and K. Zimmermann, "A description of the dynamics of a four-wheel Mecanum mobile system as a basis for a platform concept for special purpose vehicles for disabled persons," 58th ILMENAU SCIENTIFIC COLLOQUIUM, Ilmenau, Germany, 2014, [Online], urn:nbn:de:gbv:ilm1-2014iwk:3. 
  15. A. F. M. Fuad, I. A. Mahmood, S. Ahmad, N. M. H. Norsahperi, S. F. Toha, R. Akmeliawati, and F. J. Darsivan, "Modeling and simulation for heavy-duty Mecanum wheel platform using model predictive control," IOP Conference Series: Materials Science and Engineering, vol. 184, Jul., 2017, DOI: 10.1088/1757-899X/184/1/012050. 
  16. L. Xu and B. Yao, "Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation," International Jounal of Control, vol. 81, no. 2, pp. 34-45, 2008, DOI: 10.1080/00207170701390132. 
  17. M. J. Zhang and Z. Z. Chu, "Adaptive sliding mode control based on local recurrent neural networks for underwater robot," Ocean Engineering, vol. 45, pp. 56-62, May, 2012, DOI: 10.1016/B978-0-12-820271-5.00012-2. 
  18. J. Park, D.-Y. Koh, and J.-J. Kim, "Vibration Reduction Control of an Omnidirectional Mobile Robot with a High Center of Mass Based on Model Predictive Control," Journal of Institute of Control, Robotics and Systems, vol. 27, no. 10, pp. 728-735, Oct., 2021, DOI: 10.5302/J.ICROS.2021.21.0101. 
  19. C. Woo, M. Lee, and T. Yoon, "Robust Trajectory Tracking Control of a Mecanum Wheeled Mobile Robot Using Impedance Control and Integral Sliding Mode Control," Journal of Korea Society, vol. 14, no. 4, pp. 256-264, Dec., 2018, DOI: 10.7746/jkros.2018.13.4.256. 
  20. C.-C. Cheah and D. Wang, "Learning impedance control for robotic manipulators," IEEE Transactions on Robotics and Automation, vol. 14, no. 3, pp. 452-465, Jun., 1998, DOI: 10.1109/70.678454. 
  21. S. Jung, T. C. Hsia, and R. G. Bonitz, "Force tracking impedance control of robot manipulators under unknown environment," IEEE Transactions on Control Systems Technology, vol. 12, no. 3, pp. 474-483, May, 2004, DOI: 10.1109/TCST.2004.824320. 
  22. M. Kollmitz, D. Buscher, T. Schubert, and W. Burgard, "Whole-Body Sensory Concept for Compliant Mobile Robots," IEEE International Conference on Robotics and Automation(ICRA), Brisbane, Australia, 2018, DOI: 10.1109/ICRA.2018.8460510. 
  23. T. C. Hsia and S. Jung, "Studies of Lateral Impedance Force Control for an Autonomous Mobile Robot with Slip," Journal of Control, Automation, and Systems Engineering, vol. 12, no. 2, pp. 161-167, Feb., 2006, DOI: 10.5302/J.ICROS.2006.12.2.161. 
  24. Q. Gao, L. Liu, G. Feng, Y. Wang, and J. Qiu, "Universal fuzzy integral sliding-mode controllers based on T-S fuzzy models," IEEE Transactions on Fuzzy Systems, vol. 22, no. 2, pp. 350-362, Apr., 2014, DOI: 10.1109/TFUZZ.2013.2254717. 
  25. D. S. Baek, S. K. Park, and T. S. Yoon, "Trajectory tracking control system design of mobile robot based on WIPDC and ISMC," KIEE Summer Conference 2015, Muju, Korea, pp. 1337-1338, 2015, [Online], https://koreascience.kr/article/CFKO201531751956299.pdf. 
  26. L-.C. Lin and H.-Y. Shin, "Modeling and adaptive control of an omni-mecanum-wheeled robot," Intelligent Control and Automation, vol. 4, no. 2, pp. 166-179, 2013, DOI: 10.4236/ica.2013.42021. 
  27. A. Dietrich, Whole-Body Impedance Control of wheeled Humanoid Robots, 1st ed, Springer Cham, 2016, DOI: 10.1007/978-3-319-40557-5. 
  28. H. Shim, G. Park, Y. Joo, J. Back, and N. H. Jo, "Yet another tutorial of disturbance observer: Robust stabilization and recovery of nominal performance," Control Theory Technol., vol. 14, no. 3, pp. 237-249, Sept., 2016, DOI: 10.1007/s11768-016-6006-9.