• Title/Summary/Keyword: state recognition

Search Result 1,016, Processing Time 0.031 seconds

Image Restoration Network with Adaptive Channel Attention Modules for Combined Distortions (적응형 채널 어텐션 모듈을 활용한 복합 열화 복원 네트워크)

  • Lee, Haeyun;Cho, Sunghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • The image obtained from systems such as autonomous driving cars or fire-fighting robots often suffer from several degradation such as noise, motion blur, and compression artifact due to multiple factor. It is difficult to apply image recognition to these degraded images, then the image restoration is essential. However, these systems cannot recognize what kind of degradation and thus there are difficulty restoring the images. In this paper, we propose the deep neural network, which restore natural images from images degraded in several ways such as noise, blur and JPEG compression in situations where the distortion applied to images is not recognized. We adopt the channel attention modules and skip connections in the proposed method, which makes the network focus on valuable information to image restoration. The proposed method is simpler to train than other methods, and experimental results show that the proposed method outperforms existing state-of-the-art methods.

A Study on the Improvement of High Performance Computing Education in Computational Science (계산과학분야의 고성능컴퓨팅 교육 개선을 위한 탐색적 연구)

  • Yoon, Heejun;Ahn, Seongjin
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.21-31
    • /
    • 2018
  • In order to utilize HPC in Computational science, It is necessary to learn the knowledge and skills of computer science such as programming, algorithms and data structure. In this paper, we investigate IT education status in Computational science and propose policy directions to improve the HPC education through user survey. To do this, we surveyed the current state of IT subjects among major subjects in physics, chemistry, life sciences, and earth science in domestic universities and surveyed the users' Recognition of HPC education. As a result, the ratio of IT subjects in Computational science was very lower than the ratio of major domain subjects. Despite the high educational needs of universities, the educational level of universities was the lowest. Most users have learned the necessary knowledge and skills through self-study. We recognized the role of the university is the most urgent and important, and the role of professional institutions and online education is also important.

Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management

  • Choi, Eun Jeong;Kim, Dong Keun
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.309-316
    • /
    • 2018
  • Objectives: Both the valence and arousal components of affect are important considerations when managing mental healthcare because they are associated with affective and physiological responses. Research on arousal and valence analysis, which uses images, texts, and physiological signals that employ deep learning, is actively underway; research investigating how to improve the recognition rate is needed. The goal of this research was to design a deep learning framework and model to classify arousal and valence, indicating positive and negative degrees of emotion as high or low. Methods: The proposed arousal and valence classification model to analyze the affective state was tested using data from 40 channels provided by a dataset for emotion analysis using electrocardiography (EEG), physiological, and video signals (the DEAP dataset). Experiments were based on 10 selected featured central and peripheral nervous system data points, using long short-term memory (LSTM) as a deep learning method. Results: The arousal and valence were classified and visualized on a two-dimensional coordinate plane. Profiles were designed depending on the number of hidden layers, nodes, and hyperparameters according to the error rate. The experimental results show an arousal and valence classification model accuracy of 74.65 and 78%, respectively. The proposed model performed better than previous other models. Conclusions: The proposed model appears to be effective in analyzing arousal and valence; specifically, it is expected that affective analysis using physiological signals based on LSTM will be possible without manual feature extraction. In a future study, the classification model will be adopted in mental healthcare management systems.

User Customized Realization of Virtual Earthquakes based on Visual Intelligence and Dynamic Simulation (시각지능 및 동적 시뮬레이션 기반의 사용자 맞춤형 가상 지진 실감화)

  • Kwon, Jihoe;Ryu, Dongwoo;Lee, Sangho
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.614-623
    • /
    • 2018
  • The recent occurrence of consecutive large earthquakes in the southeastern part of the Korean peninsula has brought significant attention to the prevention of earthquake damage in Korea. This article aims to explore a technology-based approach for earthquake drills using state-of-the-art visual intelligence and virtual reality technologies. The technical process consists of several stages, including acquisition of image information in living spaces using a camera, recognition of objects from the acquired image information, extraction of three dimensional geometric information, simulation of virtual earthquakes using dynamic modelling techniques such as the discrete element method, and realization of the simulated earthquake in a virtual reality environment. This article provides a comprehensive analysis of the individual processes at each stage of the technical process, a survey on the current status of related technologies, and discussion of the technical challenges in its execution.

The process of estimating user response to training stimuli of joint attention using a robot (로봇활용 공동 주의 훈련자극에 대한 사용자 반응상태를 추정하는 프로세스)

  • Kim, Da-Young;Yun, Sang-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1427-1434
    • /
    • 2021
  • In this paper, we propose a psychological state estimation process that computes children's attention and tension in response to training stimuli. Joint attention was adopted as the training stimulus required for behavioral intervention, and the Discrete trial training (DTT) technique was applied as the training protocol. Three types of training stimulation contents are composed to check the user's attention and tension level and provided mounted on a character-shaped tabletop robot. Then, the gaze response to the user's training stimulus is estimated with the vision-based head pose recognition and geometrical calculation model, and the nervous system response is analyzed using the PPG and GSR bio-signals using heart rate variability(HRV) and histogram techniques. Through experiments using robots, it was confirmed that the psychological response of users to training contents on joint attention could be quantified.

Problems and countermeasures of the private security industry according to the current situation

  • Park, Su-Hyeon;Choi, Dong-Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.315-320
    • /
    • 2020
  • The purpose of this study is to analyze and interpret the current situation of private security companies·guards for the past three years, security companies by size, general·special (new education), and qualification system provided by the Police Agency, Security Association, etc. It provides a theoretical foundation for private security and provides a new perspective for interpreting private security. As a result, through the current situation, this private security has a concentration of metropolitan area and facility security, an abnormal personal protection company contrast, the number of personal protection institutes, there is a special security shift to regular jobs, and the current continuous education On the other hand, the education of special security guards has been shown to be limited. In the qualification system, the utilization of security instructor qualifications and the utilization and public relations of personal probation officer qualifications will appear. The current state of typical private security is as follows. The first is the balanced development of private security and the clarity of business divisions. Second, the quality of private security education and educational institutions must be high. Third is the recognition of the qualification system and active public relations.

Inspection of guided missiles applied with parallel processing algorithm (병렬처리 알고리즘 적용 유도탄 점검)

  • Jung, Eui-Jae;Koh, Sang-Hoon;Lee, You-Sang;Kim, Young-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.293-298
    • /
    • 2021
  • In general, the guided weapon seeker and the guided control device process the target, search, recognition, and capture information to indicate the state of the guided missile, and play a role in controlling the operation and control of the guided weapon. The signals required for guided weapons are gaze change rate, visual signal, and end-stage fuselage orientation signal. In order to process the complex and difficult-to-process missile signals of recent missiles in real time, it is necessary to increase the data processing speed of the missiles. This study showed the processing speed after applying the stop and go and inverse enumeration algorithm among the parallel algorithm methods of PINQ and comparing the processing speed of the signal data required for the guided missile in real time using the guided missile inspection program. Based on the derived data processing results, we propose an effective method for processing missile data when applying a parallel processing algorithm by comparing the processing speed of the multi-core processing method and the single-core processing method, and the CPU core utilization rate.

Age and Gender Classification with Small Scale CNN (소규모 합성곱 신경망을 사용한 연령 및 성별 분류)

  • Jamoliddin, Uraimov;Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.99-104
    • /
    • 2022
  • Artificial intelligence is getting a crucial part of our lives with its incredible benefits. Machines outperform humans in recognizing objects in images, particularly in classifying people into correct age and gender groups. In this respect, age and gender classification has been one of the hot topics among computer vision researchers in recent decades. Deployment of deep Convolutional Neural Network(: CNN) models achieved state-of-the-art performance. However, the most of CNN based architectures are very complex with several dozens of training parameters so they require much computation time and resources. For this reason, we propose a new CNN-based classification algorithm with significantly fewer training parameters and training time compared to the existing methods. Despite its less complexity, our model shows better accuracy of age and gender classification on the UTKFace dataset.

CARE Model-based Math Learning Coaching Model Development Study (CARE 모델 기반 수학학습 코칭 모델 개발 연구)

  • Kim, Jung Hyun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.36 no.4
    • /
    • pp.511-533
    • /
    • 2022
  • The purpose of this study is to develop a learning coaching model suitable for the mathematics subject by reflecting the characteristics of the mathematics subject and the mathematics teaching/learning process in the CARE learning coaching model that supports students' self-directed learning. The mathematics learning coaching model developed in this study is a 'step' and 'element' to apply coaching, and a 'strategy' for carrying out it. Mathematics learning coaching model evaluated rapport, trust, state management, and math pre-test as elements of 'creating a comfortable atmosphere', and problem recognition, hypercognition, restructuring, initiative, and math learning ability as elements of 'improving perception'. Self-efficacy, learning readiness, confirmation (feedback) as elements of the 'reawakening of learning immersion' stage, voluntary motivation and success experiences as elements of the 'empowerment' stage, and various math learning strategies to perform each element presented. The math learning coaching model can be used to help math teachers motivate students to learn and help students solve their own problems.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.