References
- Salamon N, Grimm JM, Horack JM, Newton EK. Application of virtual reality for crew mental health in extended-duration space missions. Acta Astronaut 2018;146:117-22. https://doi.org/10.1016/j.actaastro.2018.02.034
- Valmaggia LR, Latif L, Kempton MJ, Rus-Calafell M. Virtual reality in the psychological treatment for mental health problems: an systematic review of recent evidence. Psychiatry Res 2016;236:189-95. https://doi.org/10.1016/j.psychres.2016.01.015
- Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Programs Biomed 2018;161:1-13. https://doi.org/10.1016/j.cmpb.2018.04.005
- Zhang Q, Chen X, Zhan Q, Yang T, Xia A. Respirationbased emotion recognition with deep learning. Comput Ind 2017;92-93:84-90. https://doi.org/10.1016/j.compind.2017.04.005
- Yin Z, Zhao M, Wang Y, Yang J, Zhang J. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput Methods Programs Biomed 2017;140:93-110. https://doi.org/10.1016/j.cmpb.2016.12.005
- Haeyen S, van Hooren S, van der Veld WM, Hutschemaekers G. Promoting mental health versus reducing mental illness in art therapy with patients with personality disorders: a quantitative study. Arts Psychother 2018;58:11-6. https://doi.org/10.1016/j.aip.2017.12.009
- Zhang L, Kong M, Li Z. Emotion regulation difficulties and moral judgement in different domains: the mediation of emotional valence and arousal. Pers Individ Dif 2017;109:56-60. https://doi.org/10.1016/j.paid.2016.12.049
- Healey J, Picard RW. Detecting stress during real-world driving tasks using physiological sensors. IEEE trans Intell Transp Syst 2005;6(2):156-66. https://doi.org/10.1109/TITS.2005.848368
- Xia L, Malik AS, Subhani AR. A physiological signalbased method for early mental-stress detection. Biomed Signal Process Control 2018;46:18-32. https://doi.org/10.1016/j.bspc.2018.06.004
- Lee D, Kim JH, Jung WH, Lee HJ, Lee SG. The study on EEG based emotion recognition using the EMD and FFT. Proceedings of the HCI Society of Korea; 2013 Jan 30-Feb 1; Jeongseon, Korea. p. 127-30.
- Wang D, Shang Y. Modeling physiological data with deep belief networks. Int J Inf Educ Technol 2013;3(5):505-11.
- DEAPdataset: a dataset for emotion analysis using EEG, physiological and video signal [Internet]. London: Queen Mary University of London; c2017 [cited at 2018 Oct 1]. Available from: http://www.eecs.qmul.ac.uk/mmv/datasets/deap.
- Kim J, Andre E. Emotion recognition based on physiological changes in music listening. IEEE Trans Pattern Anal Mach Intell 2008;30(12):2067-83. https://doi.org/10.1109/TPAMI.2008.26
- Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol 2010;84(3):394-421. https://doi.org/10.1016/j.biopsycho.2010.03.010
- Collet C, Vernet-Maury E, Delhomme G, Dittmar A. Autonomic nervous system response patterns specificity to basic emotions. J Auton Nerv Syst 1997;62(1-2):45-57. https://doi.org/10.1016/S0165-1838(96)00108-7
- Ryoo DW, Kim YS, Lee JW. Wearable systems for service based on physiological signals. Conf Proc IEEE Eng Med Biol Soc 2005;3:2437-40.
- Jerritta S, Murugappan M, Nagarajan R, Wan K. Physiological signals based human emotion recognition: a review. Proceedings of 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA); 2001 Mar 4-6; Penang, Malaysia. p. 410-5.
- Chang CY, Zheng JY, Wang CJ. Based on support vector regression for emotion recognition using physiological signals. Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN); 2010 Jul 18-23; Barcelona, Spain. p. 1-7.
- Kim JH, Whang MC, Kim YJ, Woo JC. The study on emotion recognition by time dependent parameters of autonomic nervous response. Korean J Sci Emot Sensib 2008;11:637-44.
- Vogt T, Andre E. Improving automatic emotion recognition from speech via gender differentiation. Proceedings of Language Resources and Evaluation Conference (LREC); 2006 May 24-26; Genoa, Italy.
- Mill A, Allik J, Realo A, Valk R. Age-related differences in emotion recognition ability: a cross-sectional study. Emotion 2009;9(5):619-30. https://doi.org/10.1037/a0016562
- Russell JA. A circumplex model of affect. J Pers Soc Psychol 1980;39(6):1161-78. https://doi.org/10.1037/h0077714
- Kwon SJ. Sentiment analysis of movie reviews using the Word2vec and RNN [Master's thesis]. Seoul, Korea: Dongguk University; 2009.
- TensorFlow. Recurrent neural network [Internet]. [place unknown]: TensorFlow; c2018 [cited at 2018 Oct 1]. Available from: https://www.tensorflow.org/tutorials/sequences/recurrent.
- Chanel G, Kierkels JJ, Soleymani M, Pun T. Short-term emotion assessment in a recall paradigm. Int J Hum Comput Stud 2009;67(8):607-27. https://doi.org/10.1016/j.ijhcs.2009.03.005
- Rainville P, Bechara A, Naqvi N, Damasio AR. Basic emotions are associated with distinct patterns of cardiorespiratory activity. Int J Psychophysiol 2006;61(1):5-18. https://doi.org/10.1016/j.ijpsycho.2005.10.024
- Deeplearning4j [Internet]. Ottawa, Canada: Eclipse Foundation; c2018 [cited at 2018 Oct 1]. Available from https://deeplearning4j.org/about.
- Machine learning: learning rate, data processing, overfitting [Internet]. [place unknown: publisher unknown]; c2017 [cited at 2018 Oct 1]. Available from http://copycode.tistory.com/166.
- Song SH. The emotion analysis based on long short term memory using the central and autonomic nervous system signals [Master's thesis]. Seoul, Korea: Sangmyung University; 2018.
Cited by
- Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features vol.13, pp.None, 2019, https://doi.org/10.3389/fncom.2019.00053
- Deep Learning in Physiological Signal Data: A Survey vol.20, pp.4, 2020, https://doi.org/10.3390/s20040969
- Machine-Learning-Based Emotion Recognition System Using EEG Signals vol.9, pp.4, 2018, https://doi.org/10.3390/computers9040095
- Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review vol.15, pp.None, 2018, https://doi.org/10.3389/fnsys.2021.729707
- Impact of Visual Design Elements and Principles in Human Electroencephalogram Brain Activity Assessed with Spectral Methods and Convolutional Neural Networks vol.21, pp.14, 2018, https://doi.org/10.3390/s21144695