• Title/Summary/Keyword: state recognition

Search Result 1,016, Processing Time 0.023 seconds

Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method (Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링)

  • Oh, SangYeob
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.243-248
    • /
    • 2015
  • Recognition model is not defined when you configure a model, Been added to the model after model building awareness, Model a model of the clustering due to lack of recognition models are generated by modeling is causes the degradation of the recognition rate. In order to improve decision tree state tying modeling using parameter estimation of Bayesian method. The parameter estimation method is proposed Bayesian method to navigate through the model from the results of the decision tree based on the tying state according to the maximum probability method to determine the recognition model. According to our experiments on the simulation data generated by adding noise to clean speech, the proposed clustering method error rate reduction of 1.29% compared with baseline model, which is slightly better performance than the existing approach.

Implementation of Connected-Digit Recognition System Using Tree Structured Lexicon Model (트리 구조 어휘 사전을 이용한 연결 숫자음 인식 시스템의 구현)

  • Yun Young-Sun;Chae Yi-Geun
    • MALSORI
    • /
    • no.50
    • /
    • pp.123-137
    • /
    • 2004
  • In this paper, we consider the implementation of connected digit recognition system using tree structured lexicon model. To implement efficiently the fixed or variable length digit recognition system, finite state network (FSN) is required. We merge the word network algorithm that implements the FSN with lexical tree search algorithm that is used for general speech recognition system for fast search and large vocabulary systems. To find the efficient modeling of digit recognition system, we investigate some performance changes when the lexical tree search is applied.

  • PDF

Unseen Model Prediction using an Optimal Decision Tree (Optimal Decision Tree를 이용한 Unseen Model 추정방법)

  • Kim Sungtak;Kim Hoi-Rin
    • MALSORI
    • /
    • no.45
    • /
    • pp.117-126
    • /
    • 2003
  • Decision tree-based state tying has been proposed in recent years as the most popular approach for clustering the states of context-dependent hidden Markov model-based speech recognition. The aims of state tying is to reduce the number of free parameters and predict state probability distributions of unseen models. But, when doing state tying, the size of a decision tree is very important for word independent recognition. In this paper, we try to construct optimized decision tree based on the average of feature vectors in state pool and the number of seen modes. We observed that the proposed optimal decision tree is effective in predicting the state probability distribution of unseen models.

  • PDF

Construction of Customer Appeal Classification Model Based on Speech Recognition

  • Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.258-266
    • /
    • 2023
  • Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.

Smart pattern recognition of structural systems

  • Hassan, Maguid H.M.
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.39-56
    • /
    • 2010
  • Structural Control relies, with a great deal, on the ability of the control algorithm to identify the current state of the system, at any given point in time. When such algorithms are designed to perform in a smart manner, several smart technologies/devices are called upon to perform tasks that involve pattern recognition and control. Smart pattern recognition is proposed to replace/enhance traditional state identification techniques, which require the extensive manipulation of intricate mathematical equations. Smart pattern recognition techniques attempt to emulate the behavior of the human brain when performing abstract pattern identification. Since these techniques are largely heuristic in nature, it is reasonable to ensure their reliability under real life situations. In this paper, a neural network pattern recognition scheme is explored. The pattern identification of three structural systems is considered. The first is a single bay three-story frame. Both the second and the third models are variations on benchmark problems, previously published for control strategy evaluation purposes. A Neural Network was developed and trained to identify the deformed shape of structural systems under earthquake excitation. The network was trained, for each individual model system, then tested under the effect of a different set of earthquake records. The proposed smart pattern identification scheme is considered an integral component of a Smart Structural System. The Reliability assessment of such component represents an important stage in the evaluation of an overall reliability measure of Smart Structural Systems. Several studies are currently underway aiming at the identification of a reliability measure for such smart pattern recognition technique.

Performance Improvement of Korean Connected Digit Recognition Using Various Discriminant Analyses (다양한 변별분석을 통한 한국어 연결숫자 인식 성능향상에 관한 연구)

  • Song Hwa Jeon;Kim Hyung Soon
    • MALSORI
    • /
    • no.44
    • /
    • pp.105-113
    • /
    • 2002
  • In Korean, each digit is monosyllable and some pairs are known to have high confusability, causing performance degradation of connected digit recognition systems. To improve the performance, in this paper, we employ various discriminant analyses (DA) including Linear DA (LDA), Weighted Pairwise Scatter LDA WPS-LDA), Heteroscedastic Discriminant Analysis (HDA), and Maximum Likelihood Linear Transformation (MLLT). We also examine several combinations of various DA for additional performance improvement. Experimental results show that applying any DA mentioned above improves the string accuracy, but the amount of improvement of each DA method varies according to the model complexity or number of mixtures per state. Especially, more than 20% of string error reduction is achieved by applying MLLT after WPS-LDA, compared with the baseline system, when class level of DA is defined as a tied state and 1 mixture per state is used.

  • PDF

A Computer Vision-based Assistive Mobile Application for the Visually Impaired (컴퓨터 비전 기반 시각 장애 지원 모바일 응용)

  • Secondes, Arnel A.;Otero, Nikki Anne Dominique D.;Elijorde, Frank I.;Byun, Yung-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2138-2144
    • /
    • 2016
  • People with visual disabilities suffer environmentally, socially, and technologically. Navigating through places and recognizing objects are already a big challenge for them who require assistance. This study aimed to develop an android-based assistive application for the visually impaired. Specifically, the study aimed to create a system that could aid visually impaired individuals performs significant tasks through object recognition and identifying locations through GPS and Google Maps. In this study, the researchers used an android phone allowing a visually impaired individual to go from one place to another with the aid of the application. Google Maps is integrated to utilize GPS in identifying locations and giving distance directions and the system has a cloud server used for storing pinned locations. Furthermore, Haar-like features were used in object recognition.

Primitive Body Model Encoding and Selective / Asynchronous Input-Parallel State Machine for Body Gesture Recognition (바디 제스처 인식을 위한 기초적 신체 모델 인코딩과 선택적 / 비동시적 입력을 갖는 병렬 상태 기계)

  • Kim, Juchang;Park, Jeong-Woo;Kim, Woo-Hyun;Lee, Won-Hyong;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Body gesture Recognition has been one of the interested research field for Human-Robot Interaction(HRI). Most of the conventional body gesture recognition algorithms used Hidden Markov Model(HMM) for modeling gestures which have spatio-temporal variabilities. However, HMM-based algorithms have difficulties excluding meaningless gestures. Besides, it is necessary for conventional body gesture recognition algorithms to perform gesture segmentation first, then sends the extracted gesture to the HMM for gesture recognition. This separated system causes time delay between two continuing gestures to be recognized, and it makes the system inappropriate for continuous gesture recognition. To overcome these two limitations, this paper suggests primitive body model encoding, which performs spatio/temporal quantization of motions from human body model and encodes them into predefined primitive codes for each link of a body model, and Selective/Asynchronous Input-Parallel State machine(SAI-PSM) for multiple-simultaneous gesture recognition. The experimental results showed that the proposed gesture recognition system using primitive body model encoding and SAI-PSM can exclude meaningless gestures well from the continuous body model data, while performing multiple-simultaneous gesture recognition without losing recognition rates compared to the previous HMM-based work.

The Actual State of Food Purchasing Behaviors Regarding Nutrition Facts Labels among Middle School Students in Chungbuk Area (중학생의 영양 성분 표시에 대한 구매 행동 및 이용 실태 - 충북 지역을 중심으로 -)

  • Kim, Myung-Hee;Choi, Mi-Kyeong;Kim, Mi-Won;Jeon, Ye-Sook;Kim, Mi-Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.492-500
    • /
    • 2010
  • This study conducted a questionnaire survey of 482 male and female second graders in middle schools located in Cheongju, Chungcheongbukdo. This study lays its purpose on establishing the nutrition facts labeling system by understanding eating habits and analyzing the actual state of reading nutrition facts labels and degrees of understanding them among middle school students, and helping them to engage in right food purchasing activities and through it result in developing sound eating habits by providing them with basic material to be employed to actively utilize nutrition facts for choosing and buying healthy foods. As a result of surveying regarding the actual state of reading food labels, regarding degrees of recognition of food labels, it was revealed that 91.1% of female students recognized them, while 42.1% of male students did not recognize them, indicating lower levels of recognition among the male group. Regarding reasons for not checking food labels, 49.2% indicated habitual purchasing, followed by poor contents in the label(20.2%), ununderstandable contents(17.7%), and the lower reliability of the contents(6.9%). As a result of surveying regarding the actual state of reading nutrition facts labels, in recognition of nutrition facts labels, female rather than male students showed higher degrees of recognition, and degrees of recognition were found to differ according to parents' total income and mothers' educational attainments.

Virtual Environment Modeling for Battery Management System

  • Piao, Chang-Hao;Yu, Qi-Fan;Duan, Chong-Xi;Su, Ling;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1729-1738
    • /
    • 2014
  • The offline verification of state of charge estimation, power estimation, fault diagnosis and emergency control of battery management system (BMS) is one of the key technologies in the field of electric vehicle battery system. It is difficult to test and verify the battery management system software in the early stage, especially for algorithms such as system state estimation, emergency control and so on. This article carried out the virtual environment modeling for verification of battery management system. According to the input/output parameters of battery management system, virtual environment is determined to run the battery management system. With the integration of the developed BMS model and the external model, the virtual environment model has been established for battery management system in the vehicle's working environment. Through the virtual environment model, the effectiveness of software algorithm of BMS was verified, such as battery state parameters estimation, power estimation, fault diagnosis, charge and discharge management, etc.