• 제목/요약/키워드: state recognition

Search Result 1,016, Processing Time 0.027 seconds

Recognizing F5-like stego images from multi-class JPEG stego images

  • Lu, Jicang;Liu, Fenlin;Luo, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4153-4169
    • /
    • 2014
  • To recognize F5-like (such as F5 and nsF5) steganographic algorithm from multi-class stego images, a recognition algorithm based on the identifiable statistical feature (IDSF) of F5-like steganography is proposed in this paper. First, this paper analyzes the special modification ways of F5-like steganography to image data, as well as the special changes of statistical properties of image data caused by the modifications. And then, by constructing appropriate feature extraction sources, the IDSF of F5-like steganography distinguished from others is extracted. Lastly, based on the extracted IDSFs and combined with the training of SVM (Support Vector Machine) classifier, a recognition algorithm is presented to recognize F5-like stego images from images set consisting of a large number of multi-class stego images. A series of experimental results based on the detection of five types of typical JPEG steganography (namely F5, nsF5, JSteg, Steghide and Outguess) indicate that, the proposed algorithm can distinguish F5-like stego images reliably from multi-class stego images generated by the steganography mentioned above. Furthermore, even if the types of some detected stego images are unknown, the proposed algorithm can still recognize F5-like stego images correctly with high accuracy.

Stochastic Pronunciation Lexicon Modeling for Large Vocabulary Continous Speech Recognition (확률 발음사전을 이용한 대어휘 연속음성인식)

  • Yun, Seong-Jin;Choi, Hwan-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 1997
  • In this paper, we propose the stochastic pronunciation lexicon model for large vocabulary continuous speech recognition system. We can regard stochastic lexicon as HMM. This HMM is a stochastic finite state automata consisting of a Markov chain of subword states and each subword state in the baseform has a probability distribution of subword units. In this method, an acoustic representation of a word can be derived automatically from sample sentence utterances and subword unit models. Additionally, the stochastic lexicon is further optimized to the subword model and recognizer. From the experimental result on 3000 word continuous speech recognition, the proposed method reduces word error rate by 23.6% and sentence error rate by 10% compare to methods based on standard phonetic representations of words.

  • PDF

Perceived oral health awareness in dementia and dementia-suspected depending on KMME (일부 치매 및 치매의심환자들의 인지기능에 따른 구강보건인식 조사)

  • Kim, Eun Sook;Hong, Min-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.15 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • Objectives: The purpose of this study is to investigate cognitive function, performance of activities of daily living, and recognition on oral health with the cognitive function testto dementia or dementia-suspected patients in the outpatients. Methods: The subjects were 94 dementia or dementia-suspected patients visiting C University hospital for the dementia test. Study instruments included Korea Mini-Mental State Examination KMMS, The Bayer-Activities of Daily Living Scale; B-ADL, Seoul-Instrumental Activities of Daily Living; S-IADL, Global Deterioration Scale; GDS, Korean Dementia Screening Questionnaire; KDSQ, and underlying diseases. Results: Dementia or dementia-suspected patients were 42 by KMMSE test, 25 patients had impaired functioning of daily living by B-ADL test, 27 patients showed the presence of depression by GDS test, and 45 patients showed impaired functioning of daily living. There was a statistically significant difference in the subjective recognition on oral health conditions. There was a statistically significant difference in the subjective recognition on oral health conditions by ADL. There was a positive correlation between the cognitive function and ADL performance. Higher cognitive function is proportional to ADL performance. Conclusions: The cognitive function was closely associated with ADL and subjective oral health conditions.

Traffic Signal Recognition System Based on Color and Time for Visually Impaired

  • P. Kamakshi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.48-54
    • /
    • 2023
  • Nowadays, a blind man finds it very difficult to cross the roads. They should be very vigilant with every step they take. To resolve this problem, Convolutional Neural Networks(CNN) is a best method to analyse the data and automate the model without intervention of human being. In this work, a traffic signal recognition system is designed using CNN for the visually impaired. To provide a safe walking environment, a voice message is given according to light state and timer state at that instance. The developed model consists of two phases, in the first phase the CNN model is trained to classify different images captured from traffic signals. Common Objects in Context (COCO) labelled dataset is used, which includes images of different classes like traffic lights, bicycles, cars etc. The traffic light object will be detected using this labelled dataset with help of object detection model. The CNN model detects the color of the traffic light and timer displayed on the traffic image. In the second phase, from the detected color of the light and timer value a text message is generated and sent to the text-to-speech conversion model to make voice guidance for the blind person. The developed traffic light recognition model recognizes traffic light color and countdown timer displayed on the signal for safe signal crossing. The countdown timer displayed on the signal was not considered in existing models which is very useful. The proposed model has given accurate results in different scenarios when compared to other models.

Implementation of Vocabulary- Independent Speech Recognizer Using a DSP (DSP를 이용한 가변어휘 음성인식기 구현에 관한 연구)

  • Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.143-156
    • /
    • 2004
  • In this paper, we implemented a vocabulary-independent speech recognizer using the TMS320VC33 DSP. For this implementation, we had developed very small-sized recognition engine based on diphone sub-word unit, which is especially suited for embedded applications where the system resources are severely limited. The recognition accuracy of the developed recognizer with 1 mixture per state and 4 states per diphone is 94.5% when tested on frequently-used 2000 words set. The design of the hardware was focused on minimal use of parts, which results in reduced material cost. The finally developed hardware only includes a DSP, 512 Kword flash ROM and a voice codec. In porting the recognition engine to the DSP, we introduced several methods of using data and program memory efficiently and developed the versatile software protocol for host interface. Finally, we also made an evaluation board for testing the developed hardware recognition module.

  • PDF

Discrimination of Emotional States In Voice and Facial Expression

  • Kim, Sung-Ill;Yasunari Yoshitomi;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.98-104
    • /
    • 2002
  • The present study describes a combination method to recognize the human affective states such as anger, happiness, sadness, or surprise. For this, we extracted emotional features from voice signals and facial expressions, and then trained them to recognize emotional states using hidden Markov model (HMM) and neural network (NN). For voices, we used prosodic parameters such as pitch signals, energy, and their derivatives, which were then trained by HMM for recognition. For facial expressions, on the other hands, we used feature parameters extracted from thermal and visible images, and these feature parameters were then trained by NN for recognition. The recognition rates for the combined parameters obtained from voice and facial expressions showed better performance than any of two isolated sets of parameters. The simulation results were also compared with human questionnaire results.

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

Survey: Gesture Recognition Techniques for Intelligent Robot (지능형 로봇 구동을 위한 제스처 인식 기술 동향)

  • Oh Jae-Yong;Lee Chil-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.771-778
    • /
    • 2004
  • Recently, various applications of robot system become more popular in accordance with rapid development of computer hardware/software, artificial intelligence, and automatic control technology. Formerly robots mainly have been used in industrial field, however, nowadays it is said that the robot will do an important role in the home service application. To make the robot more useful, we require further researches on implementation of natural communication method between the human and the robot system, and autonomous behavior generation. The gesture recognition technique is one of the most convenient methods for natural human-robot interaction, so it is to be solved for implementation of intelligent robot system. In this paper, we describe the state-of-the-art of advanced gesture recognition technologies for intelligent robots according to three methods; sensor based method, feature based method, appearance based method, and 3D model based method. And we also discuss some problems and real applications in the research field.

Convolutional Neural Networks for Character-level Classification

  • Ko, Dae-Gun;Song, Su-Han;Kang, Ki-Min;Han, Seong-Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • Optical character recognition (OCR) automatically recognizes text in an image. OCR is still a challenging problem in computer vision. A successful solution to OCR has important device applications, such as text-to-speech conversion and automatic document classification. In this work, we analyze character recognition performance using the current state-of-the-art deep-learning structures. One is the AlexNet structure, another is the LeNet structure, and the other one is the SPNet structure. For this, we have built our own dataset that contains digits and upper- and lower-case characters. We experiment in the presence of salt-and-pepper noise or Gaussian noise, and report the performance comparison in terms of recognition error. Experimental results indicate by five-fold cross-validation that the SPNet structure (our approach) outperforms AlexNet and LeNet in recognition error.

New Postprocessing Methods for Rejectin Out-of-Vocabulary Words

  • Song, Myung-Gyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.19-23
    • /
    • 1997
  • The goal of postprocessing in automatic speech recognition is to improve recognition performance by utterance verification at the output of recognition stage. It is focused on the effective rejection of out-of vocabulary words based on the confidence score of hypothesized candidate word. We present two methods for computing confidence scores. Both methods are based on the distance between each observation vector and the representative code vector, which is defined by the most likely code vector at each state. While the first method employs simple time normalization, the second one uses a normalization technique based on the concept of on-line garbage mode[1]. According to the speaker independent isolated words recognition experiment with discrete density HMM, the second method outperforms both the first one and conventional likelihood ratio scoring method[2].

  • PDF