• Title/Summary/Keyword: state of charge

Search Result 1,200, Processing Time 0.034 seconds

A Study on the Causes for Declining of Business Area in the Old Downtown of Jeju-si - Focused on a Physical Situation of Land Use and Buildings - (제주시 구도심 상권의 쇠퇴 원인에 관한 연구 -토지이용 및 건축물 등의 물리적 현황을 중심으로-)

  • Cha, Ho-Cheol;Park, Chul-Min
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • The aim of this thesis is to present why the business district of old downtown in Jejusi collapsed and what sort of problems caused by that as collecting objective data, which help us to comprehend how the commercial zone has been decaying, on the physical state of the specific area near 'Sinheungro' and 'Chilsungro', which are main commercial sites in the downtown, and analysing it. Firstly It was revealed that most land investigated was property in which structure was able to built or poor land within $60m^2$. This was caused by increasing in land value and high density in space use so that the area did not develop. Secondly, In addition to be low density, most of buildings in 'Sinheungro' and 'Chilsungro' were so old and inefficient - the old buildings were abandoned without improving due to expensive rent and complicated property rights. Thirdly, According to the survey accomplished, major commercial facilities in the area have struggled with the continuous recession in their business. It was the inevitable result of not having an effective alliance with surrounding retail shops and a lack of a strategic action for satisfying consumers desire or adapting to new shopping patterns. Fourthly, Infrastructure in the site was ruining the beauty of the urban landscape as well as bringing on bad access to the inner city as not having improved enough. Furthermore, many administration departments which were in charge of each infrastructure existed. This was resulted from not considering unification between each infrastructure and regional characteristics of the local community.

Natural Rubber Electrical Conduction Mechanism in High and Low Electric Fields (고전계와 저전계에서 천연고무의 전기전도기구)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.307-308
    • /
    • 2007
  • This work shows the experimental results obtained from ageing at a temperature of 100 C for 48, 70 and 312 h, although the application of AC electrical tension in samples and the measuring of current leakage are presented. The measurements in samples were carried out with samples prepared from the deformulated commercial materials and respectively reformulated into thin films. The obtained results showed the mechanisms of conduction of samples in low and high electric fields. It was also identified an electric tension transition showing that in low fields it prevails the Ohm's law conduction, and in high electric fields it prevails the conduction of space charge limited current (SCLC). These results can support the natural rubber formulation process having as their main objective the reducing of the mechanisms that occur under high conduction current in high electric fields, which leads the material to a dielectric breakdown. Raw Natural rubber in Brazil is extracted from rubber trees (Hevea brasiliensis) in farms in So Paulo State by using some new plantation technology in smaller spaces, with trees placed a few meters from each other. In the Amazon rain forest the rubber trees are found naturally and their spacing may be of hundreds of meters or even kilometers between them. It is necessary to research this raw material from different internationally standard clones to characterize dielectric and electric properties for industrial applications. Moreover, this natural material has a low commercial price when compared to the synthetic ones.

  • PDF

The optical characteristics study of sandwich structure based liquid crystal for the radiation detector application (방사선 검출기 적용을 위한 액정 기반 다층 구조의 광 특성 평가)

  • Shin, Jung-Wook;Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Yul;Kim, Jin-Young;Lee, Gun-Hwan;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.390-392
    • /
    • 2005
  • The digital radiation detectors are used clinically by diagnostic apparatus. However the digital radiation detector are some problem like high operating voltage, light blurring, low conversion efficiency, low fill factor, etc. Thus we propose a new radiation detector that the photoconductor layer and liquid crystal layer are coupled in sandwich structure. X-ray absorption in the photoconductor layer controls the state of the liquid crystal via creation of charge carrier and the light modulation of liquid crystal make image formation. The advantage of the new radiation detector is that high resolution image is acquired and the signal amplification is possible by external visible light source. In this study, we study the optical properties and electrical properties of the new radiation detector to irradiate X-ray. The Mercury Iodide($HgI_2$) was used by photoconductor material, and the aluminum is used by reflective layer. The thickness of Mercury Iodide is about $200{\mu}m$, the operating voltage of the liquid crystal is 1.5~5V. The electrical properties of Mercury Iodide was measured, and the transmission efficiency of liquid crystal was measured by modulation potential.

  • PDF

A Study on the Actual Conditions of Inflammables and Explosives in Army Camps (군부대 위험물 실태 조사에 관한 연구)

  • Shin, Mi-Hwa;Yoon, Myong-O;Hyun, Seong-Ho;Jeong, Dok-Kun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.82-92
    • /
    • 2009
  • This study analyzed the present operation state and cases of safety accidents of inflammables and explosives in army camps by focusing on staffs in charge for safety supervision of inflammables and explosives in army camps. Moreover, through this analysis, the study surveyed the actual safety supervision conditions in a workplace related to the hazardous materials, the safety plan for inflammables and explosives, the quality of education for safety supervision, the consciousness of safety supervisors for the safety supervision of inflammables and explosives, and so on. On basis of this research, the actual conditions of inflammables and explosives in army camps were investigated. By not only establishing the systematic safety plan but also developing the safety supervision education programs to manage inflammables and explosives in army camps safely, this study tries to arouse military officers' interest and ensure a safe workplace. Furthermore, this study presents public relations and revitalization of the education to make safety supervisors for inflammables and explosives and the interested parties recognize the hazards of safety accidents, by cutting them off from safety accidents in advance.

  • PDF

Numerical Simulation on the Formation and Pinching Plasma in X-pinch Wires on 2-D Geometry (자기유체역학 코드를 이용한 축 대칭 엑스 핀치 플라즈마 구조의 2차원 전산해석)

  • Byun, Sangmin;Na, Yong-Su;Chung, Kyoung-Jae;Kim, Deok-Kyu;Lee, Sangjun;Lee, Chanyoung;Ham, Seunggi;Ryu, Jonghyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper deals with the computational work to characterize the formation and pinching of a plasma in an X-pinch configuration. A resistive magnetohydrodynamic model of a single fluid and two temperature is adopted assuming a hollow conical structure in the (r,z) domain. The model includes the thermodynamic parameter of tungsten from the corrected Thomas-Fermi EOS(equation of state), determining the average ionization charge, pressure, and internal energy. The transport coefficients, resistivity and thermal conductivity, are obtained by the corrected Lee & More model and a simple radiation loss rate by recombination process is considered in the simulation. The simulation demonstrated the formation of a core-corona plasma and intense compression process near the central region which agrees with the experimental observation in the X-pinch device at Seoul National University. In addition, it confirmed the increase in radiation loss rate with the density and temperature of the core plasma.

Performance enhancement of perovskite solar cells using Ag nanoparticles via aerosol technology (에어로졸 기술로 제작된 은 나노 입자를 활용한 페로브스카이트 태양전지 성능 향상 연구)

  • Sua Park;Inyong Park;Dae Hoon Park;Bangwoo Han;Gunhee Lee;Min-cheol Kim
    • Particle and aerosol research
    • /
    • v.19 no.2
    • /
    • pp.21-30
    • /
    • 2023
  • Solar cells, converting abundant solar energy into electrical energy, are considered crucial for sustainable energy generation. Recent advancements focus on nanoparticle-enhanced solar cells to overcome limitations and improve efficiency. These cells offer two potential efficiency enhancements. Firstly, plasmonic effects through nanoparticles can improve optical performance by enhancing absorption. Secondly, nanoparticles can improve charge transport and reduce recombination losses, enhancing electrical performance. However, factors like nanoparticle size, placement, and solar cell structure influence the overall performance. This study evaluates the performance of silver nanoparticles incorporated in a p-i-n structure of perovskite solar cells, generated via aerosol state by the evaporation and condensation system. The silver nanoparticles deposited between the hole transport layer and transparent electrode form nanoparticle embedded transport layer (NETL). The evaluation of the optoelectronic properties of perovskite devices using NETL demonstrates their potential for improving efficiency. The findings highlight the possibility of nanoparticle incorporation in perovskite solar cells, providing insights for sustainable energy generation.

Radiation Resistance of BGO:Eu Scintillator (BGO:Eu 섬광체의 방사선 저항)

  • Kim, Jong-Il;Jeong, Jung-Hyun;Doh, Sih-Hong;Hwang, Hae-Sun;Kim, Sung-Chuel;Kim, Jung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Bismuth germanate crystals well known as scintillator were grown by Czochralski method. In order to understand a mechanism of radiation resistance in Eu-doped BGO, we measured radiation induced-absorption spectra, excitation spectra, emission spectra and luminescence lifetimes of BGO crystals. We found that the charge transfer state of $Eu^{3+}$ ion is to play a key role to enhance the radiation resistance in BGO crystal. The $^{5}D_{0}$ emission of $Eu^{3+}$ ions that is not suitable for the radiation detectors due to a long decay time was found to be increased with increasing europium concentration. In the BGO crystal doped with 0.1 mole%, the density of radiation induced color centers was reduced about twenty times and the light output of $^{5}D_{0}$ was negligible by comparing to that of BGO.

  • PDF

Comparative Analysis of SOC Estimation using EECM and NST in Rechargeable LiCoO2/LiFePO4/LiNiMnCoO2 Cells

  • Lee, Hyun-jun;Park, Joung-hu;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1664-1673
    • /
    • 2016
  • Lithium rechargeable cells are used in many industrial applications, because they have high energy density and high power density. For an effective use of these lithium cells, it is essential to build a reliable battery management system (BMS). Therefore, the state of charge (SOC) estimation is one of the most important techniques used in the BMS. An appropriate modeling of the battery characteristics and an accurate algorithm to correct the modeling errors in accordance with the simplified model are required for practical SOC estimation. In order to implement these issues, this approach presents the comparative analysis of the SOC estimation performance using equivalent electrical circuit modeling (EECM) and noise suppression technique (NST) in three representative $LiCoO_2/LiFePO_4/LiNiMnCoO_2$ cells extensively applied in electric vehicles (EVs), hybrid electric vehicles (HEVs) and energy storage system (ESS) applications. Depending on the difference between some EECMs according to the number of RC-ladders and NST, the SOC estimation performances based on the extended Kalman filter (EKF) algorithm are compared. Additionally, in order to increase the accuracy of the EECM of the $LiFePO_4$ cell, a minor loop trajectory for proper OCV parameterization is applied to the SOC estimation for the comparison of the performances among the compared to SOC estimation performance.

Depositon of NiO films for Inorganic Hole-transporting Layer in QD-LED (QD-LED용 무기계 홀전도층 NiO 박막 증착 연구)

  • Chung, Kook-Chae;Oh, Seung-Kun;Kim, Young-Kuk;Choi, Chul-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.330-330
    • /
    • 2009
  • For the high-performance Quantum dots-Light Emitting Diodes in the near-infrared and visible spectrum, adequate electro- and hole-transporting layers are required. The operation lifetimes of typical materials used in OLEDs are very limited and degraded especially by the oxygen and humid atmosphere. In this work, NiO was selected as a possible hole-transporting layer replacing the TPD film used in QD-LEDs. About 40-nm-thick NiO films have been deposited by the rf-sputtering method on various technical substrates such as FTO/glass, ITO/glass, and ITO/PEN. For the balance of charge carriers and quenching consideration, the resistivity of the deposited NiO films was investigated controlling the oxygen in the sputtering gas. NiO films were fabricated at room temperature and about 6mTorr using pure Ar, 2.5%-, 5%-, and 10%-mixed $O_2$ in Ar respectively. We also investigated the rf-power dependence on NiO films in the range of 80 ~ 200 Watts. The resistivity of the samples was varied from highly conductive to resistive state. Also discussed are the surface roughness of NiO films to provide the smooth surface for the deposition of QDs.

  • PDF

Effects of Substrate and Annealing Temperatures on the Properties of SrWO4:Dy3+, Eu3+ Phosphor Thin Films (기판 및 열처리 온도에 따른 SrWO4:Dy3+, Eu3+ 형광체 박막의 특성)

  • Kim, Jungyun;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.577-582
    • /
    • 2016
  • $Dy^{3+}$ and $Eu^{3+}$-codoped $SrWO_4$ phosphor thin films were deposited on sapphire substrates by radio frequency magnetron sputtering by changing the growth and thermal annealing temperatures. The results show that the structural and optical properties of the phosphor thin films depended on the growth and thermal annealing temperatures. All the phosphor thin films, irrespective of the growth or the thermal annealing temperatures, exhibited tetragonal structures with a dominant (112) diffraction peak. The thin films deposited at a growth temperature of $100^{\circ}C$ and a thermal annealing temperature of $650^{\circ}C$ showed average transmittances of 87.5% and 88.4% in the wavelength range of 500-1100 nm and band gap energy values of 4.00 and 4.20 eV, respectively. The excitation spectra of the phosphor thin films showed a broad charge transfer band that peaked at 234 nm, which is in the range of 200-270 nm. The emission spectra under ultraviolet excitation at 234 nm showed an intense emission peak at 572 nm and several weaker bands at 479, 612, 660, and 758 nm. These results suggest that the $SrWO_4$: $Dy^{3+}$, $Eu^{3+}$ thin films can be used as white light emitting materials suitable for applications in display and solid-state lighting.