• 제목/요약/키워드: state feedback controller

검색결과 676건 처리시간 0.029초

역진자형 자주로보트의 2차원 평면에서 궤도주행제어에 관한 연구 (Trajectory Tracking Control of the Wheeled Inverse Pendulum Type Self - Contained Mobile Robot in Two Dimensional Plane)

  • 하윤수;유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권5호
    • /
    • pp.44-53
    • /
    • 1993
  • In this paper, we discuss on the control algorithm to make the wheeled inverse pendulum type mobile robot move in two dimensional plane. The robot considered in this paper has two independently driven wheels in same axel which suport and move it-self, and is assumed to have the fyro type sensor to know the inclination algle of the body and rotary encoders to know wheel's rotation angular velocity. The control algorithm is divided into three parts. The first part is for the posture and velocity control for forward-backward direction, the second is the steering control, and the last part is for the control of total system to track the given trajectory. We handle the running velocity control of the robot as part of the posture control to keep the balance because the posture relates deeply with the velocity and can be controlled by the velocities of the wheels. The control problem is analyzed as the tracking control, and the controller is realized with the state feedback and feed-forward of the reference velocity. Constructing the control system which contained one intergrator in forward path, we also realized the control system without observer for the estimation of the accumulated errors in the inclination angle of the body. To prevent the robot from being unstable state by sudden variation of the reference velocity when it starts and stops, or changes velocity, the reference velocity of which acceleration is slowly changing, is ordered to the robot. To control its steering, we give the different reference velocities for both wheels which are calculated from the desired angular velocity of the body. Finally, we presents the experimental results of the experimental robot Yamabico Kurara in which the proposed control algorithm had been implemented.

  • PDF

모형 컨테이너 크레인의 파라미터 추정 및 제어;실험적 접근 (Parameter Estimation and Control for Apparatus of Container Crane;An Experimental Approach)

  • 이윤형;진강규;소명옥
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2007년도 추계학술대회 및 제23회 정기총회
    • /
    • pp.304-306
    • /
    • 2007
  • 컨테이너 크레인의 수학적 모델 정확도는 모델 내부 파라미터 값의 정확도에 의해 결정되나, 기술적 혹은 환경적인 문제로 내부 파라미터의 정확한 값을 알지 못하는 경우가 빈번히 발생하기도 한다. 이 경우에는 시스템의 입${\cdot}$출력 데이터에 근거하여 모델의 파라미터를 추정해야 하는데, 본 논문에서는 입${\cdot}$출력 데이터와 RCGA가 결합된 모델조정기법을 이용하여 모형 컨테이너 크레인 모델의 파라미터를 추정하는 방법을 보인다. 또한, 이렇게 추정한 모델에 또 다른 RCGA를 적용하여 제어에 필요한 이득행렬을 탐색한다. 제안하는 파라미터 추정법과 제어는 컨테이너 크레인의 모형실험장치에 적용하고, 실험을 실시하여 그 유효성을 검증한다.

  • PDF

능동 슬라이딩 모드 제어기를 이용한 변형된 Lorenz 카오스 동기화 (Modified Lorenz Chaos Synchronization Via Active Sliding Mode Controller)

  • 류기탁;이윤형
    • 한국산학기술학회논문지
    • /
    • 제19권7호
    • /
    • pp.16-23
    • /
    • 2018
  • 카오스는 비선형 과학 분야에서 매우 중요한 주제 중의 하나이며, Lorenz가 처음으로 소개한 이후 집중적으로 연구되어지고 있다. 카오스 시스템의 한 특성은 카오스 시스템에 의해 생성된 신호는 다른 어떤 시스템과 동기화되지 않는다는 것이다. 따라서 두 카오스 시스템은 서로 동기화되는 것이 불가능한 것처럼 보이지만, 만약 두 시스템이 적절한 방법으로 정보를 교환한다면 이 두 시스템은 동기화가 가능하다. 본 논문에서는 능동 제어와 슬라이딩 모드 제어, 그리고 리아프노프 안정도 이론을 기반으로 하는 변형된 Lorenz 카오스 시스템의 동기화 문제에 대해 다룬다. 동기화를 위해 고려한 기법은 선형상태 오차 변수에 의해 짝을 이룬 구동시스템과 응답시스템으로 구성된다. 이를 위해 우선 대상 카오스 시스템에 대해 간단히 살펴본다. 다음으로 능동제어, 슬라이딩 모드 제어 기법을 이용한 카오스 시스템의 동기화와 채터링 문제를 해결하기 위한 제어 방법을 도출한다. 전체 폐루프 시스템의 점근적 안정도는 리아프노프 안정도 이론에 의해 증명한다. 컴퓨터 시뮬레이션은 제안한 방법의 타당성을 확인하기 위해 그래픽으로 제시한다.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

비선형 시스템의 시간 지연 간격에 종속적인 안정도 분석 및 제어기 설계: TS 퍼지 모델 적용 (Delay-range-dependent Stability Analysis and Stabilization for Nonlinear Systems : T-S Fuzzy Model Approach)

  • 송민국;박진배;김진규;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.337-342
    • /
    • 2009
  • 본 논문은 비선형 시스템의 퍼지 모델을 적용한 시간 지연 간격에 종속적인 안정도 분석 및 제어기 설계에 대해서 논의한다. 먼저, 시간 지연을 포함하는 비선형 시스템을 T-S 퍼지 시스템으로 모델링한다. 시간 지연을 포함하는 전체 페루프 비선형 시스템은 다중 시간 지연을 갖는 T-S 퍼지 시스템이 된다. 전체 폐루프 퍼지 시스템의 안정도를 분석하고, 안정화 시키는 퍼지 제어기 설계를 위한 필요충분 조건을 유도한다. 유도된 안정도 및 제어기 설계 조건이 시간 지연 간격에 종속적임을 확인하다. 기존의 시간 지연에 종속적인 안정도 및 제어기 설계 조건 보다 넓은 범위를 나타냄을 확인한다. 제안된 필요충분 조건을 선형 행렬 부등식의 형태로 나타내고, 기존의 다양한 프로그래밍 기법을 이용하여 제어기 이득값을 구한다. 예제를 통하여 제안된 이론의 타당성을 확인한다.

Development of Integrated Orbit and Attitude Software-in-the-loop Simulator for Satellite Formation Flying

  • Park, Han-Earl;Park, Sang-Young;Park, Chandeok;Kim, Sung-Woo
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2013
  • An integrated orbit and attitude control algorithm for satellite formation flying was developed, and an integrated orbit and attitude software-in-the-loop (SIL) simulator was also developed to test and verify the integrated control algorithm. The integrated algorithm includes state-dependent Riccati equation (SDRE) control algorithm and PD feedback control algorithm as orbit and attitude controller respectively and configures the two algorithms with an integrating effect. The integrated SIL simulator largely comprises an orbit SIL simulator for orbit determination and control, and attitude SIL simulator for attitude determination and control. The two SIL simulators were designed considering the performance and characteristics of related hardware-in-the-loop (HIL) simulators and were combined into the integrated SIL simulator. To verify the developed integrated SIL simulator with the integrated control algorithm, an orbit simulation and integrated orbit and attitude simulation were performed for a formation reconfiguration scenario using the orbit SIL simulator and the integrated SIL simulator, respectively. Then, the two simulation results were compared and analyzed with each other. As a result, the user satellite in both simulations achieved successful formation reconfiguration, and the results of the integrated simulation were closer to those of actual satellite than the orbit simulation. The integrated orbit and attitude control algorithm verified in this study enables us to perform more realistic orbit control for satellite formation flying. In addition, the integrated orbit and attitude SIL simulator is able to provide the environment of easy test and verification not only for the existing diverse orbit or attitude control algorithms but also for integrated orbit and attitude control algorithms.