• Title/Summary/Keyword: stars: neutron

Search Result 50, Processing Time 0.022 seconds

Chemical and Kinematic Properties of the Galactic Halo System

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.80.2-80.2
    • /
    • 2017
  • We present chemical and kinematic properties of the Milky Way's halo system investigated by carbon-enhanced metal-poor (CEMP) stars identified from the Sloan Digital Sky Survey. We first map out fractions of CEMP-no stars (those having no over-abundances of neutron-capture elements) and CEMP-s stars (those with over-enhancements of the s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). Among CEMP stars, the CEMP-no and CEMP-s objects are classified by different levels of absolute carbon abundances, A(C). We investigate characteristics of rotation velocity and orbital eccentric for these subclasses for each halo population. Any distinct kinematic features identified between the two categories in each halo region provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

Dichotomy of the Galactic Halo as Revealed by Carbon-Enhanced Metal-Poor Giants

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.66.3-67
    • /
    • 2018
  • We present distinct chemical and kinematic properties associated with the inner and outer halos of the Milky Way, as identified by metal-poor stars from the Sloan Digital Sky Survey. In particular, using carbon-enhance metal-poor (CEMP) giants, we first map out the fractions of CEMP-no stars (without strongly enhanced neutron-capture elements) and CEMP-s stars (with a large enhancement of s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). The CEMP-no and CEMP-s objects are classified by their different levels of absolute carbon abundances, A(C). We investigate characteristics of rotational velocity and orbital eccentricity for these sub-classes within the halo populations. Distinct kinematic features and fractions between CEMP-no and CEMP-s stars identified in each halo region will provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

Recent results on IceCube multi-messenger astrophysics

  • Rott, Carsten
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Mass and radius of a neutron star in low-mass X-ray binary (LMXB) can be estimated simultaneously when the observed light curve and spectrum show the photospheric radius expansion feature. This method has been applied to 4U 1746-37 and the mass and radius were found to be unusually small in comparison with typical neutron stars. We re-estimate the mass and radius of this target by considering that the observed light curve and spectrum can be affected by other X-ray sources because this LMXB belongs to a very crowded globular cluster NGC 6441. The new estimation increases the mass and radius but they do not reach the typical values yet.

  • PDF

CLOSE ENCOUNTERS BETWEEN A NEUTRON STAR AND A MAIN-SEQUENCE STAR

  • LEE HYUNG MOK;KIM SUNG S.;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.19-30
    • /
    • 1996
  • We have examined consequences of strong tidal encounters between a neutron star and a normal star using SPH as a possible formation mechanism of isolated recycled pulsars in globular clusters. We have made a number of SPH simulations for close encounters between a main-sequence star of mass ranging from 0.2 to 0.7 $M_\bigodot$ represented by an n=3/2 poly trope and a neutron star represented by a point mass. The outcomes of the first encounters are found to be dependent only on the dimensionless parameter $\eta'{\equiv}(m/(m+ M))^{1/2}(\gamma_{min}/R_{MS})^{3/2}(m/M)^{{1/6)}$, where m and M are the mass of the main-sequence star and the neutron star, respectively, $\gamma_{min}$ the minimum separation between two stars, and $R_{MS}$ the size of the main-sequence star. The material from the (at least partially) disrupted star forms a disk around the neutron star. If all material in the disk is to be acctreted onto the neutron star's surface, the mass of the disk is enough to spin up the neutron star to spin period of 1 ms.

  • PDF

volution of massive stars in Case A binary systems and implications for supernova progenitors

  • Lee, Hunchul;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.70.4-71
    • /
    • 2020
  • One of the distinctive characteristics of the evolution of binary systems would be mass transfer. Close binary systems experience so-called Case A mass transfer during the main-sequence. We have performed calculations of the evolution of massive Case A (with the initial period 1.5 ~ 4.5 days) binary systems with the initial mass of 10 ~ 20 solar masses and mass ratio 0.5 ~ 0.95 using the MESA code. We find that in some systems, after the first mass transfer, the secondary stars evolve faster than the primary stars and undergo so-called 'reverse' mass transfer. Such phenomena tend to occur in relatively low-mass (initial mass < 16 solar masses) and close (initial period < 3 day) systems. Unless a system enters the common-envelope phase, the primary star would become a single helium star after the secondary star ends its life if the system were unbound by the neutron star kick. We find the various evolutionary implications of the remaining primary stars. In addition to the evolution into the compact single helium star progenitor, there is a possibility that the remaining primary star could evolve into a helium giant star, which could be a promising candidate for Type Ibn supernova progenitor, depending on the core mass. Further, we find that some primary stars satisfy the conditions for the formation of electron-capture supernova progenitor.

  • PDF

GRAVITATIONAL WAVES: SOURCES AND DETECTORS

  • DHURANDHAR S. V.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.273-276
    • /
    • 1996
  • The world wide efforts for detecting gravitational waves, the detectors in vogue and the expected astrophysical sources of gravitational waves will be discussed. Ground based detectors especially, the resonant bar detectors and laser interferometers will be described with a brief mention of the space based detector (the LISA project). Astrophysical sources of gravitational waves such as coalescing binaries, supernovae, pulsars/ rotating neutron stars, stochastic background will be discussed in the context of detection.

  • PDF

THE ELECTRON FRACTION AND THE FERMI ENERGY OF RELATIVISTIC ELECTRONS IN A NEUTRON STAR

  • GAO, ZHI FU;LI, X.D.;WANG, N.;PENG, Q.H.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.569-572
    • /
    • 2015
  • We first deduce a uniform formula forthe Fermi energy of degenerate and relativistic electrons in the weak-magnetic field approximation. Then we obtain an expression of the special solution for the electron Fermi energy through this formula, and express the electron Fermi energy as a function of electron fraction and matter density. Our method is universally suitable for relativistic electron- matter regions in neutron stars in the weak-magnetic field approximation.

Estimating Mass and Radius of a Neutron Star in Low-Mass X-ray Binary

  • Kwak, Kyujin;Sung, Kwang Hyun;Kim, Young-Min;Kim, Myungkuk;Lee, Chang-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2019
  • Mass and radius of a neutron star in low-mass X-ray binary (LMXB) can be estimated simultaneously when the observed light curve and spectrum show the photospheric radius expansion feature. This method has been applied to 4U 1746-37 and the mass and radius were found to be unusually small in comparison with typical neutron stars. We re-estimate the mass and radius of this target by considering that the observed light curve and spectrum can be affected by other X-ray sources because this LMXB belongs to a very crowded globular cluster NGC 6441. The new estimation increases the mass and radius but they do not reach the typical values yet.

  • PDF