• Title/Summary/Keyword: starch synthesis

Search Result 95, Processing Time 0.033 seconds

Synthesis of Glucosyl-sugar Alcohols Using Glycosyltransferases and Structural Identification of Glucosyl-maltitol

  • Kim, Tae-Kwon;Park, Dong-Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.310-317
    • /
    • 1997
  • Enzymatic synthesis of glucosyl-sugar alcohols using various transglycosylating enzymes, such as cyclodextrin glucanotransferase (CGTase), ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pullulanase was investigated using various sugar alcohols, such as sorbitol, xylitol, inositol, maltitol, and lactitol as glucosyl acceptors. CGTase showed the highest transglycosylating activity to sugar alcohols compared to other transglycosylating enzymes, and inositol and maltitol were the most suitable glucosyl acceptors. Soluble starch, extruded starch, cyclodextrins, and maltooligosaccharides were also identified to be adequate glucosyl donors for transglycosylation reaction of CGTase to sugar alcohols. The synthesis of glucosyl-maltitol in the reaction system using extruded starch as the glucosyl donor and maltitol as the glucosyl acceptor showed the best results showing the highest transglycosylation yield. The transglycosylation products were purified by activated carbon column chromatography with ethanol gradient elution. Chemical structures of above transglucosylated products were analyzed by nuclear magnetic resonance spectroscopy, and two products were identified to be maltotritol and maltotetraitol, in which one or two glucose molecules attached to the parent maltitol molecule by a ${\alpha}$-l,4-glucosidic bond, respectively.

  • PDF

Controlled Ondansetron Release Based on Hydroxyethyl Starch Hydroxyethyl Methacrylate

  • Tahir, Muhammad Nazir;Adnan, Ahmad;Cho, Eunae;Jung, Seunho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4035-4040
    • /
    • 2012
  • Presented study describes the synthesis of photo cross-linkable and water soluble hydroxyethyl starch hydroxyethyl methacrylate (HESHEMA) samples with different degree of substitution (DS) by functionalization of hydroxyethyl starch (HES) with hydroxyethyl methacrylate (HEMA) or hydroxyethyl methacrylate carbonylimidazole (HEMACI) in DMSO using two different routes. It was revealed that the reaction time for HESHEMA synthesis can be reduced from 5 days to 24 h by conducting the reaction at $80^{\circ}C$ instead of at room temperature. Solubility of HESHEMA was found to be dependent on DS which in turn was dependent on ratio between HES and HEMA or HEMACI. HESHEMA samples with DS > 0.24 depicted insoluble in water, whereas the samples with DS < 0.05 did not form appreciable gel. HESHEMA samples with appropriate DS were converted into hydrogels by cross-linking polymer chains under UV radiations and resulting HESHEMA hydrogels showed swelling up to 1200%. Application of HESHEMA in controlled drug delivery was investigated by diffusion based encapsulation of Ondansetron, a serotonin 5-$HT_3$ receptor antagonist drug, mainly used for nausea and vomiting treatment.

Identification and purification of Wx protein involved in biosynthesis of amylose in Rice (벼에서의 아밀로즈 생합성 관련 Wx 단백질의 동정 및 분리)

  • Nahm, Baek-Hie;Kim, Jin-Ku;Choi, Hae-Choon
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.533-538
    • /
    • 1993
  • The Wx protein, known as starch synthase or starch glucosyl transferase (E.C. 2.4.1.11), is responsible for the amylose synthesis. In an effort to explain the mechanism of amylose biosynthesis, the starch synthase known as Wx protein was identified by analyzing the various wx rice mutants with SDS-PAGE of proteins extracted from rice starch. Finally, the 66 kDa protein was purified by extracting the starch-bound protein fractions followed by Suprose 12 gel filtration chromatography.

  • PDF

Current status on metabolic engineering of starch in sweetpotato (고구마 전분 대사공학 연구 동향)

  • Ahn, Young-Ock;Yang, Kyoung-Sil;Kim, Sun-Hyung;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.207-213
    • /
    • 2009
  • Starch serves not only as an energy source for plants, animals, and humans but also as an environmentally friendly alternative for fossil fuels. Progress in understanding of starch biosynthesis, and the isolation of many genes involved in this process have enabled the genetic modification of crops in a rational manner to produce novel starches with improved functionality. Starch is composed of two glucose polymers, amylose and amylopectin. The amylose and amylopectin ratio in starch affects its physical and physicochemical properties. Alteration in starch structure can be achieved by modifying genes encoding the enzymes responsible for starch biosynthesis and starch hydrolysis. Here, we describe recent findings concerning the starch modification in sweetpotato. Sweetpotato [Ipomoea batatas (L.) Lam] ranks seventh in annual production among food crops in the world as an important starch source. To develop transgenic sweetpotato plants with modifying starch composition, we constructed transformation vectors overexpressing granule bound starch synthase I and inhibiting amylopectin synthesis genes such as starch branching enzyme and isoamylase under the control of 35S promoter, respectively. Transformation of sweetpotato (cv. Yulmi) is in progress.

Synthesis of Starch-g-PAN Polymer Electrolyte Membrane and Its Application to Flexible Solid Supercapacitors (Starch-g-PAN 고분자 전해질막 합성 및 플렉서블 고체 슈퍼 캐퍼시터 응용)

  • Min, Hyo Jun;Jung, Joo Hwan;Kang, Miso;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.164-172
    • /
    • 2019
  • In this work, we demonstrate a facile process to prepare an electrolyte membrane for the supercapacitor based on a graft copolymer consisting of starch and poly(acrylonitrile) (PAN). The graft copolymer (starch-g-PAN) was synthesized via free radical polymerization initiated by ceric ions. The starch-g-PAN was dissolved in ionic liquid, i.e. 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA) without any organic solvents at room temperature. The gelation of polymer electrolyte membranes occurred by applying high temperature, i.e. $100^{\circ}C$ for 1 hour. The resultant electrolyte membrane was flexible and thus applied to flexible solid supercapacitors. The performance of the supercapacitor based on starch-g-PAN graft copolymer electrolyte reached 21 F/g at a current density of 0.5 A/g. The cell also showed high cyclic stability with 86% of retention rate within 10,000 cycles. The preparation of starch-g-PAN based polymer electrolyte membrane provides opportunities for facile fabrication of flexible solid supercapacitors with good performance.

The Effect of Source of Dietary Fiber and Starch on Ileal and Fecal Amino Acid Digestibility in Growing Pigs

  • Wang, J.F.;Wang, M.;Lin, D.G.;Jensen, B.B.;Zhu, Yaohong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1040-1046
    • /
    • 2006
  • Studies were carried out with a repeated $4{\times}4$ Latin square design with eight cannulated pigs fed four experimental diets to investigate the effect of dietary fiber and starch sources on apparent ileal and fecal amino acid digestibility. Each period lasted 15 d, with diet acclimation from d 1 to 7, feces collection for 48 h on d 8 to 9 and ileal sample collection for 12 h on d 13 to 15. The four experimental diets consisted mainly of cooked rice with the addition of protein sources (CON), partial replacement of cooked rice with either potato starch (PS), sugar beet pulp (SBP) or wheat bran (WB). Chromic oxide was used as an indigestible marker. With the exception of histidine, lysine and tryptophan, no differences were observed in the apparent ileal digestibility of amino acids between diets. The inclusion of potato starch did not affect the ileal and fecal amino acid digestibility. In comparison with diet CON, a decreased (p<0.05) ileal digestibility of histidine was found in pigs fed diet SBP, while the ileal digestibilities of histidine, lysine and tryptophan were decreased (p<0.05) by the inclusion of wheat bran. Inclusion of fiber sources (sugar beet pulp and wheat bran) caused a reduction (p<0.05) in the fecal amino acid digestibility and the net disappearance of amino acids in the large intestine. Of the indispensable amino acids, there was a 'net synthesis' for methionine in the large intestine of pigs when diets were supplemented with dietary fiber. The decrease in fecal amino acid digestibility with the addition of dietary fiber indicates an increase in the synthesis of bacterial protein in the large intestine.

Effects of different amylose to amylopectin ratios on rumen fermentation and development in fattening lambs

  • Zhao, Fangfang;Ren, Wen;Zhang, Aizhong;Jiang, Ning;Liu, Wen;Wang, Faming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1611-1618
    • /
    • 2018
  • Objective: The objective of this experiment was to examine the effects of different amylose/amylopectin ratios on rumen fermentation and development of fattening lambs. Methods: Forty-eight 7-day-old male Small-tailed Han sheep${\times}$Northeast fine wool sheep were randomly assigned to four treatments of dietary amylose/amylopectin ratios (0.12, 0.23, 0.24, and 0.48 in tapioca starch, corn starch, wheat starch and pea starch diets, respectively). Three lambs from each treatment were slaughtered at 21, 35, 56, and 77 days of age to determine the rumen fermentation and development. Results: Compared with tapioca starch diet, the pea starch diet significantly increased the concentration of ammonia nitrogen in the ruminal fluid of lambs but significantly decreased the bacterial protein content. At 56 and 77 d, the rumen propionate concentration tended to be greatest in the tapioca starch group than in other groups. The rumen butyrate concentration was the greatest in lambs fed on pea starch compared with those fed on other starch diets. Furthermore, the pea starch diet significantly stimulated rumen development by increasing the papillae height, width and surface area in the rumen ventral or dorsal locations in lambs. However, different amylose/amylopectin ratios diets did not significantly affect the feed intake, body weight, average daily gain, the relative weight and capacity of the rumen in lambs with increasing length of trial periods. Conclusion: Lambs early supplemented with a high amylose/amylopectin ratio diet had favourable morphological development of rumen epithelium, which was not conducive to bacterial protein synthesis.

Synthesis of Glycoside by Transglycosylation of Amyloglucosidase from Starch. (전분으로부터 Amyloglucosidase의 당전이반응에 의한 배당체의 합성)

  • 박종이;이희정;이태호
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.187-194
    • /
    • 1998
  • Glycosides were synthesized using transglycosylation reaction of amylase in water system. Starch as a glycosyl donor and benzylalcohol as an acceptor were selected as substrates of transglycosylation reaction. Among tested 9 commercial amylase, amyloglucosidase from Rhizopus sp. had high activity for transglycosylation from starch. The glycoside synthesized in water phase by amyloglucosidase was identified as benzylalcohol-${alpha}$-glucoside (BG) of which one molecule of benzylalcohol was bound to 1-OH of glucose. The transglycosylation reaction by amyloglucosidase were carried out in reaction system containing 50 mg starch, 50 mg benzylalcohol, and 10 units enzyme in pH 5.0 at 45$^{\circ}C$. The synthesized BG was hydrolyzed by ${alpha}$-glucosidase to produce glucose and benzylalcohol.

  • PDF

Identification of Granule Bound Starch Synthase (GBSS) Isoforms in Wheat

  • Seo, Yong-Weon;Hong, Byung-Hee;Ha, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.89-94
    • /
    • 1998
  • Granule bound starch synthase (GBSS), also known as the '"waxy protein'", is responsible for the synthesis of amylose in the amyloplasts of cereal crops. In hexaploid wheat (Triticum aestivum L.), GBSS is involved in amylose synthesis and rolls as an important factor to determine flour quality and end-use quality in food products. Genes on three Wx loci have been found to encode GBSS in common wheats. We developed techniques for the purification and separation of GBSS in wheat. Three major GBSS isoforms, which were encoded by the genes on three loci, Wx-A1, Wx-B1, and Wx-D1 migrating differently by one dimensional SDS-po-lyacrylamide gel electrophoresis (1D SDS-PAGE), were identified. GBSS from 66 Korean hard and soft winter wheats were purified and determined for their Wx loci and four of them were identified possessing a null allele either at the Wx-A1 and Wx-B1 loci. With help of identification of three GBSS isoforms using 1D SDS-PAGE system, we are able to identify and monitor Wx gene expressions in breeding materials for developing waxy or partial waxy wheats without experiencing consecutive selecting generations.cting generations.

  • PDF