• Title/Summary/Keyword: starch gel

Search Result 410, Processing Time 0.022 seconds

Genetic Diversity and Speciation of Rana rugosa (Amphibia; Ranidae)

  • Yang, Suh-Yung;Min, Mi-Sook;Kim, Jong-Bum;Suh, Jae-Hwa;Kang, Young-Jin
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 2000
  • Horizontal starch gel electrophoresis for 29 populations (n=543) of the wrinkled frog, Rana rugosa, from Korea and Japan was peformed to assess the degree of genic variation and genetic diversity, and to understand the biogeographic pattern of distribution and speciation. A sum of 22 presumptive loci was screened from 17 enzymes and general proteins. Four loci, Aco, Est-3, Me-2, and Pgm, demonstrated high levels of polymorphism. The degree of average genetic variation of R. rugosa was P=22.7% (9.1-40.9%), Ho=0.086 (0.048-0.165) and He=0.090 (0.042-0.168). In the south-eastern region of the Korean peninsula (Chongsong, Yongchon, Ulsan, Kyongju, Pohang, yongdok and Ulchin), a few unique alleles in the Mpi locus were detected and their biogeographic implications were considered. The degree of genetic differentiation among the Korean populations was moderate (S=0.900), whereas the degree of genetic diversity between Korean and Japanese populations was notably high (S=0.687, D=0.293). This result corresponds with the data obtained by the mitochondrial cytochrome b gene sequence (Lee et al., 1999) suggesting that the Korean and Japanese R. rugosa might have evolved a specific level of genetic differentiation since their geographic isolation.

  • PDF

Genetic Diversity and Spatial Structure of Symplocarpus renifolius on Mt. Cheonma, Korea

  • Jeong, Ji-Hee;Park, Yu-Jin;Kim, Zin-Suh
    • Korean Journal of Plant Resources
    • /
    • v.20 no.6
    • /
    • pp.530-539
    • /
    • 2007
  • Genetic variation and structure of 9 subpopulations of Symplocarpus renifolius Schott ex Tzvelev on Mt. Cheonma, in Korea, were determined via starch-gel electrophoresis. The genetic diversity at 10 loci for 8 isozymes ($P_{99}=66%,\;A=2.26,\;H_o=0.212,\;H_e=0.230$) was found to be considerably higher than that seen in other long-lived perennial plants. On the whole, the genotype frequencies were in accordance with Hardy-Weinberg expectations. Approximately 5%($\theta=0.049$) of the total variability was among subpopulations. The high levels of observed genetic diversity in S. renifolius were attributed to a universal outcrossing system and other specific factors like differences in age classes and widely scattered individuals around the main distribution. Heterozygosity was highest at a mid-range of elevation($450m{\sim}600m$). The lowest heterozygosity at lower elevation was attributed to the possible origin of seeds transported by water from upstream regions during the monsoon season. Spatial structure in a subpopulation evidenced a strong autocorrelation between closer individuals within $3{\sim}4m$ of distance. This was assumed to be attributable to the restricted seed dispersal characteristics of S. renifolius. In accordance with the findings generated in this study, some implications regarding the conservation of S. renifolius at the Mt. Cheonma were also presented.

Partial Purification and Characterization of Exoinulinase from Kluyveromyces marxianus YS-1 for Preparation of High-Fructose Syrup

  • Singh, Ram Sarup;Dhaliwal, Rajesh;Puri, Munish
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.733-738
    • /
    • 2007
  • An extracellular exoinulinase($2,1-\beta-D$ fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable(100%) for 3 h at the optimum temperature of $50^{\circ}C$. $Mn^{2+}\;and\;Ca^{2+}$ produced a 2A-fold and 1.2-fold enhancement in enzyme activity, whereas $Hg^{2+}\;and\;Ag^{2+}$ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6mg/ml and 41.3mg/ml, respectively.

Genetic Variation and Conservation of the Endangered Species Cotoneaster wilsonii (Rosaceae) from Ulleung Island

  • Park, Jiwon;Lee, Junsoo;So, Soonku;Kim, Muyeol
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.3
    • /
    • pp.125-129
    • /
    • 2009
  • The genetic diversity plays a significant role in determining a species' survival and perseverance. Endangered species often lack genetic variation, which makes them vulnerable to numerous dangers of extinction including selection, genetic drifts and human interference. Knowing an endangered species' genetic background greatly enhances conservation efforts since it reveals why, what and how to conserve that species. Cotoneaster wilsonii is an endangered plant species endemic to Ulleung island, but not enough genetic research has been done on this taxon for its effective conservation plans. In this study, three populations of C. wilsonii in Ulleung island underwent allozyme analysis through starch gel electrophoresis. 10 loci were analyzed and F-statistics was calculated. Overall data indicated that C. wilsonii possessed low genetic diversity with intense inbreeding, heterozygote deficiency and low differentiation among populations. These results implied that C. wilsonii was recently introduced to the Ulleung island from ancestor species, and did not have much time to differentiate. Current status of C. wilsonii habitats is very fragile and vulnerable, with increasing tourism constantly threatening the species' survival. It is very likely that C. wilsonii will become extinct in near future unless organized conservation protects its populations and genetic diversity.

Studies on $\alpha$-amylase of Bocillus circulans F-2 (Part II) Enzymatic characteristics of the purified $\alpha$-amylase (Bacillus circulans F-2가 생산하는 $\alpha$-amylase에 관한 연구 (제 I I 보) 정제$\alpha$-amylase의 효소적특성)

  • ;Hajime Taniguchi;Yoshiharu Maruyama
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.123-132
    • /
    • 1982
  • These experiments were conducted to investigate the enzymatic characteristics of the purified $\alpha$-amylase (F-2A) of Bacillus circulans F-2 and the digestion rate of various starches. 1. The molecular weight was estimated to be 93000 by SDS-polyacrylamide disc gel electrophoresis. The isoelectric point was about pH 5.0. The optimum pH for the enzyme action was 6.0-6.5 and the stable pH ranged pH 5.5-12.0. The optimum temperature was 6$0^{\circ}C$, and the purified $\alpha$-amylase was stable below 4$0^{\circ}C$. 2. The purified $\alpha$-amylase was activated by Mn$^{++}$ and Co$^{++}$, whereas it was inhibited by Ag$^{+}$, HT$^{++}$, Cu$^{++}$ and Pb$^{++}$. 3. The purified $\alpha$-amylase is considered to have no sulfhydryl residue essential for its catalytic activity. 4. Michaelis constant (Km) was 1.704 mg/$m\ell$. Activation energy between 25-4$0^{\circ}C$ was 12.297 Kcal/mole, and between 40-6$0^{\circ}C$, it was 7.831 Kcal/mole. 5. The hydrolysis product from soluble starch, amylose and amylopectin in the early stage of hydrolysis was G$_{6}$, and as hydrolysis proceeds, G$_4$and G$_2$appeared. 6. Products from each oligosaccarides are as follows: G$_4$longrightarrow G$_2$+ G$_2$,G$_3$ +G$_1$,G$_{5}$longrightarrow G$_4$+G$_1$,G$_{6}$longrightarrowG$_4$+ G$_2$,G$_{7}$ G$_4$,G$_{8}$longrightarrow G$_4$+G$_4$, 7. On raw potato starch, raw sago starch and raw yam starch, the purified enzyme exhibited a remarkably high digestion rate than Porcine pancreatic amylase and Streptococcus bovis amylase.

  • PDF

Characteristics of a-Amylase of, a New Species, Aspergillus coreanus NR 15-1 (시종 누룩사상균, Aspergillus coreanus NR 15-1의 a-Amylase의 효소학적 특성)

  • 이상훈;정혁준;여수환;김현수;유대식
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • The characteristics of the a-amylase of Aspergillus coreanus NR 15-1 isolated from traditional Korean Nuruk have been carried out. The a-amylase of A. coreanus NR 15-1 was purified by ammonium sulfate precipitation followed by column chromatographies on CM-cellulose, DEAE-cellulose, Sephadex G-100 gel filtration and hydroxyapatite. The a-amylase was purified 78-fold with a yield of 8.7%. The molecular weight of the a-amylase was estimated to be 49 kDa by Sephadex G-100 gel filtration and 51 kDa by SDS-polyacrylamide gel eletrophoresis. These experimental results suggested that the purified enzyme might be monomer. The enzyme was stable between pH 4 and 11. The optimum pH was 5.0. The optimum temperature for enzyme was 45$^{\circ}C$ and the enzyme was stable up to 50$^{\circ}C$. The enzyme was significantly inhibited by 1 mM N-bromosuccinimide. These results suggested that tryptophan residue was involved in the active site of a-amylase. The enzyme was identified as a-amylase because the reaction products of soluble starch hydrolyzed by the purified enzyme was oligosaccharide by thin layer chromatography.

Bacillus subtilis를 이용한 대두 발효식품의 혈전용해능

  • Jeong, Yeong-Gi
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2001.06a
    • /
    • pp.67-86
    • /
    • 2001
  • A strain producing strongly fibrinolytic enzyme was isolated from soil and was identified to be Bacillus subtilis by biochemical and physiological characterization. The optimal culture conditions for the production of fibrinolytic enzyme was determined to be 1.0% tryptone, 1.5% soluble starch, 0.5% Peptone, 0.5% NaCl, $(NH_{4})_{3}PO_4.3H_{2}O, and MgSO_{4}.7H_{2}O.$ Initial pH and temperature were pH 8.0 and $30^{\circ}C$ , respectively, The highest enzyme production was observed at 30 hours of cultivation at $30^{\circ}C$ The fibrinolytic enzyme was purified to homogeneity by DEAE Sephadex A-50 ion exchange column chromatography, 70% ammonium sulfate precipitation, Sephadex G-200 and G-75 gel filtration column chromatography. The molecular weight of the purified enzyme was 28,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A gene encoding the fibrinolytic enzyme was cloned into a plasmid vector pBluescript, transforming E.coli XL-1 Blue. The clone was able to degrade fibrin, This indicated that the gene could encode a fibrinolytic enzyme. The nucleotide sequence of the 2.7 kb insert was determined in both direction. One open reading frame composed of 1023 nucleotides was found to be a potential protein coding region. There was the putative Shine-Dalgano sequence and TATA box upstream of the open reading frame. The homology search data in the genome database showed that both the 2.7 kb insert and 1 kb open reading frame carried no significance in the nucleotide sequence of known fibrinolytic enzyme from Bacillus serovars. The recombinant cell harboring the novel gene involved in fibrinolysis was subjected to protein purification. The molecular mass of the purified fibrinolytic enzyme was determined to be 31864 Dalton, which was highly in accordance with the molecular mass(33 kDa) of the fibrinolytic gene deduced from the insert. The fibrinolytic enzyme was Purified 50.5 folds to homogeneity in overall yield of 10.7% by DEAE Sephadex A-50 ion exchange, 85% ammonium sulfate precipitation, Sephadex G-50, Superdex 75 HR FPLC gel filtration. In conclusion, a novel fibrinolytic gene from Bacillus subtilis was identified and characterized by cloning a genomic library of Bacillus subtilis into pBleuscript. For the soybean fermented by this strain, it is found that there increased assistant protein about 20% compared to the soybean not fermented and increased about 30% according to amino acid analysis and, in particular, essential amino acid increased about 40%. When keeping this fermented soybean powder at room temperature for about 70days, it showed very high stability maintaining almost perfect activity and, therefore, it gave us great suggestion its possibility of development as a new functional food.

  • PDF

Effect of Soybean Meal and Soluble Starch on Biogenic Amine Production and Microbial Diversity Using In vitro Rumen Fermentation

  • Jeong, Chang-Dae;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Soriano, Alvin P.;Cho, Kwang Keun;Jeon, Che-Ok;Lee, Sung Sil;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • This study was conducted to investigate the effect of soybean meal (SM) and soluble starch (SS) on biogenic amine production and microbial diversity using in vitro ruminal fermentation. Treatments comprised of incubation of 2 g of mixture (expressed as 10 parts) containing different ratios of SM to SS as: 0:0, 10:0, 7:3, 5:5, 3:7, or 0:10. In vitro ruminal fermentation parameters were determined at 0, 12, 24, and 48 h of incubation while the biogenic amine and microbial diversity were determined at 48 h of incubation. Treatment with highest proportion of SM had higher (p<0.05) gas production than those with higher proportions of SS. Samples with higher proportion of SS resulted in lower pH than those with higher proportion of SM after 48 h of incubation. The largest change in $NH_3$-N concentration from 0 to 48 h was observed on all SM while the smallest was observed on exclusive SS. Similarly, exclusive SS had the lowest $NH_3$-N concentration among all groups after 24 h of incubation. Increasing methane ($CH_4$) concentrations were observed with time, and $CH_4$ concentrations were higher (p<0.05) with greater proportions of SM than SS. Balanced proportion of SM and SS had the highest (p<0.05) total volatile fatty acid (TVFA) while propionate was found highest in higher proportion of SS. Moreover, biogenic amine (BA) was higher (p<0.05) in samples containing greater proportions of SM. Histamines, amine index and total amines were highest in exclusive SM followed in sequence mixtures with increasing proportion of SS (and lowered proportion of SM) at 48 h of incubation. Nine dominant bands were identified by denaturing gradient gel electrophoresis (DGGE) and their identity ranged from 87% to 100% which were mostly isolated from rumen and feces. Bands R2 (uncultured bacterium clone RB-5E1) and R4 (uncultured rumen bacterium clone L7A_C10) bands were found in samples with higher proportions of SM while R3 (uncultured Firmicutes bacterium clone NI_52), R7 (Selenomonas sp. MCB2), R8 (Selenomonas ruminantium gene) and R9 (Selenomonas ruminantium strain LongY6) were found in samples with higher proportions of SS. Different feed ratios affect rumen fermentation in terms of pH, $NH_3$-N, $CH_4$, BA, volatile fatty acid and other metabolite concentrations and microbial diversity. Balanced protein and carbohydrate ratios are needed for rumen fermentation.

Genetic Variants of Serum Proteins and Enzymes in Holstein-Friesian Cattle (홀스타인종 유우의 혈청단백질 및 효소의 유전적 변이체)

  • Sang, Byung Chan;Ryoo, Seung Heui;Seo, Kil Woong;Lee, Chang Soo
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.163-169
    • /
    • 1995
  • This study was carried out to examine the genetic constitution of serum proteins and enzymes in Holstein Friesian cattle population. The genetic variants of post-transferrin-2(pTf-2), transferrin(Tf), post-albumin(pAlb), ceruloplasmin(Cp) and amylase-I(Am-I) were analyzed by using PAGE(polyacrylamide gel electrophoresis) and STAGE(starch gel electrophoresis). In serum proteins, the pTf-2 locus were observed to be controlled by codominant alleles designated F and S, and the distribution of genotypes were 76.34, 14.50 and 9.10% for pTf-2 FF, FS and SS types, respectively. The gene frequencies of the pTf-2 F and S allele were 0.836 and 0.164. The Tf locus were found to be controlled by four alleles, Tf A, D1, D2 and E at a single locus, and the distribution of genotypes were 6.11, 32.06, 19.08, 1.53, 10.69, 18.32, 9.92 and 2.29% for Tf AA, AD1, AD2, AE, D1D1, D1D2, D2D2 and D2E type, respectively. The gene frequencies of the Tf A, D1, D2 and E wee 0.321, 0.359, 0.298 and 0.019. The pAlb locus were identified to be genetically controlled by two alleles, pAlb F and S allele, and the distribution of genotypes were 32.06, 29.77 and 38.17% for pAlb FF, FS and SS types, respectively. The gene frequencies of the pAlb F and S allele were 0.461 and 0.531. The Alb locus were observed to be controlled by Alb A and B allele, and the gene frequencies of these were 0.996 and 0.004. In serum enzymes, the Cp locus were found to be controlled by F and S allele, and the distribution of genotypes were 46.57, 27.48 and 25.95% for Cp FF, FS and SS types, respectively. The gene frequencies of F and S allele were 0.603 and 0.394. The Am-I locus were observed to be controlled by Am-I B and C allele, and the distribution of genotypes were 39.69, 21.73 and 38.93% for Am-I BB, BC and CC types, the gene frequencies of Am-I B and C were 0.503 and 0.497, respectively.

  • PDF

Quality Properties and Processing Optimization of Mackerel (Scomber japonicus) Sausage (수세 횟수 및 첨가제 비율에 따른 고등어(Scomber japonicus) 소시지의 품질 특성 및 제조조건 최적화)

  • Kim, Koth-Bong-Woo-Ri;Jeong, Da-Hyun;Bark, Si-Woo;Kang, Bo-Kyeong;Pak, Won-Min;Kang, Ja-Eun;Park, Hong-Min;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1656-1663
    • /
    • 2013
  • Processing conditions of mackerel sausage were optimized for number of washes (0, 1, 2, and 3 times) and percentages of various additives: salt (1, 1.5, 2, 3%), phosphate complex (0.1, 0.3, 0.5%), sugar (1, 2, 3%), and corn starch (1, 3, 5%). The whiteness of mackerel sausage significantly increased with increasing washing time, but the whiteness of mackerel sausage prepared with additives did not show large differences. Conditions consisting of two washes, 2% salt, 2% sugar, and 5% corn starch showed the highest hardness and gel strength, whereas the group supplemented with phosphate complex showed no considerable differences compared to the control. In the sensory evaluation, the mackerel sausage prepared with two washes compared to the control scored higher for color, aroma, and overall preference. In addition, mackerel sausage supplemented with 2% salt, 2% sugar, and 5% corn starch scored highest in overall preference. There was no significant difference in mackerel sausage supplemented with phosphate complex. Therefore, these results suggest the optimal conditions for improving the texture and sensory properties of mackerel sausage were two washes, 2% salt, 0.5% phosphate complex, 2% sugar, and 5% corn starch.