Browse > Article

Genetic Diversity and Spatial Structure of Symplocarpus renifolius on Mt. Cheonma, Korea  

Jeong, Ji-Hee (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Park, Yu-Jin (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Kim, Zin-Suh (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Publication Information
Korean Journal of Plant Resources / v.20, no.6, 2007 , pp. 530-539 More about this Journal
Abstract
Genetic variation and structure of 9 subpopulations of Symplocarpus renifolius Schott ex Tzvelev on Mt. Cheonma, in Korea, were determined via starch-gel electrophoresis. The genetic diversity at 10 loci for 8 isozymes ($P_{99}=66%,\;A=2.26,\;H_o=0.212,\;H_e=0.230$) was found to be considerably higher than that seen in other long-lived perennial plants. On the whole, the genotype frequencies were in accordance with Hardy-Weinberg expectations. Approximately 5%($\theta=0.049$) of the total variability was among subpopulations. The high levels of observed genetic diversity in S. renifolius were attributed to a universal outcrossing system and other specific factors like differences in age classes and widely scattered individuals around the main distribution. Heterozygosity was highest at a mid-range of elevation($450m{\sim}600m$). The lowest heterozygosity at lower elevation was attributed to the possible origin of seeds transported by water from upstream regions during the monsoon season. Spatial structure in a subpopulation evidenced a strong autocorrelation between closer individuals within $3{\sim}4m$ of distance. This was assumed to be attributable to the restricted seed dispersal characteristics of S. renifolius. In accordance with the findings generated in this study, some implications regarding the conservation of S. renifolius at the Mt. Cheonma were also presented.
Keywords
Isozyme; Conservation; Genetic diversity; Spatial differentiation; Symplocarpus renifolius;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Degen, B., R. Petit and A. Kremer. 2001. SGS - Spatial Genetic Software: a computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. J. Hered. 92: 447-448   DOI   ScienceOn
2 Hong, S. P. and J. C. Son. 2003. Pollination of Symplocarpus renifolius Schott ex Miquel (Araceae) in Korea. Kor. J. Plant Tax. 33: 165-179 (in Korean)   DOI
3 Ito, K. T. Ito, Y. Onda and M. Uemura, 2004. Temperaturetriggered periodical thermogenic oscillations in Skunk cabbage (Symplocarpusjoetidus). Plant Cell Physiol. 45: 257-264   DOI   ScienceOn
4 Jeong, J. H. 2003. Genetic variation of Symplocarpus renifolius in Mt. Cheonma. MS thesis. Korea University, Seoul Korea (in Korean)
5 Lewis, P. O. and D. Zaykin. 1999. Genetic data analysis: Computer program for the analysis of allelic data, version 1.0 (d12) (see http://lewis.eeb.uconn.edu/lewishome/)
6 Nakagawa, M. 2004. Genetic diversity of fragmented populations of Polygala reinii (Pilugalaceae), a perennial herb endemic to Japan. J. Plant Res. 117: 355-361   DOI
7 Susan, K., D. N. John, M. H. Frances and J. T. Stephen. 2001. Spatial population genetic structure in Trillium grandiflorum: The role of dispersal, mating, history, and selection. Evolution 55: 1560-1568   DOI
8 Wada, N. and S. Uemura, 2000. Size-dependent flowering behavior and heat production of a sequential hermaphrodite, Symplocarpus renifolius (Araceae). Am. J. Bot. 87: 1489-1494   DOI
9 Weeden, N.F. and J. F. Wendel. 1989. Genetics of plant isozymes. In: Soltis, D.E. and P. S. Soltis (eds.) Isozymes in Plant Biology. Dioscorides, Portland, OR pp. 46-72
10 Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370   DOI   ScienceOn
11 Wright, S. 1951. The genetical structure of populations. Ann. Eugenic 15: 323-354
12 Wilson, K. A. 1960. The genera of Arales in the southeastern United State. J. Amold. Arbor. 41: 47-72
13 Clark, P. J. and F. C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35: 445-453   DOI   ScienceOn
14 Uemura, S., K. Ohkawara, G. Kudo, N. Wada and S. Higashi. 1993. Heat-production and cross-pollination of the Asian Skunk Cabbage Symplocarpus renifolius (Araceae). Am. J. Bot. 80: 635-640   DOI   ScienceOn
15 Weir, B. S. 1996. Genetic data analysis II. Sinauer, Sunderland, MA
16 Hamrick, J.L. and J. D. Nason. 1996. Consequences of dispersal in plants. In: Rhodes, O. E. J., R. K. Chesser and M. H. Smith (eds.) Population Dynamics in Ecological Space and Time. The Univ of Chicago Press, Chicago, IL pp. 203-236
17 Swofford, D.L. and R. B. Selander. 1989. BIOSYS-l: A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7. Illinois Natural History Survey, IL
18 Wada, N. and S. Uemura 1994. Seed dispersal and predation by small rodents on the herbaceous understory plant Symplocarpus renifolius. Am. Midl. Natl. 132: 320-327   DOI   ScienceOn
19 Li, H. 1979. Symplocarpus. In: Wu, C.Y. and H. Li (eds.) Flora Republicae Popularis Sinicae. Vol. 13, No.2, Science Press, Beijing pp. 11
20 Wen, J., R. K. Jansen and K. Kilgore. 1996. Evolution of the astern Asian and North American disjunct genus Symplocarpus (Araceae): Insight from chloroplast DNA restriction site data. Biochem. Syst. Ecol. 24: 736-747
21 Chung, M. Y., J. D. Nason and M. G. Chung. 2004. Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae). Am. J. Bot. 91: 52-57   DOI   ScienceOn
22 Hamrick, J.L. and M. J. W. Godt. 1989. Allozyme diversity in plant species. In: Brown, A. D. H., M. T. Clegg, A. L. Kahler and B. S. Weir (eds.) Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland, MA pp. 43-63
23 Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590
24 Gao, L., C. Wei, Q. Yang, D. Hong and S. Ge. 2001. IntraPopulation genetic structure of Oryza rufipogon Griff. in Yunnan, China. J. Plant Res. 114: 107-113   DOI
25 Kang, H. J. and B. M. Min. 1994. Population dynamics of Symplocarpus renifolius 2. Seed production. Korean J. Ecol. 17: 463-469 (in Korean)
26 Degen, B. 2000. SGS: Spatial Genetic Software. Computer program and user's manual version 1.0c. (see http://kourou.cira d.fr/genetique/sofrware.html)
27 Chung, M.Y., Y. B. Suh, J. Lopez-Pujol, J. D. Nason and M. G. Chung. 2005. Clonal and fine-scale genetic structure in populations of a restricted Korean endemic, Hosta jonesii (Liliaceae) and the implications for conservation. Ann. Bot. 96: 279-288   DOI   ScienceOn
28 Conkle, M. T., P. D. Hodgskiss, L. B. Nunnally and S. C. Hunter. 1982. Starch gel electrophoresis of conifer seeds: a laboratory manual. General Technical Report PSW-64. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California
29 Williams, C. F. 1994. Genetic consequences of seed dispersal in three sympatric forest herbs. II. Microspatial genetic structure within populations. Evolution 48: 1959-1972   DOI   ScienceOn
30 Camazine, S. and K. J. Niklas. 1984. Aerobiology of Symplocarpus foetidus: Interactions between the spathe and spadix. Am. J. Bot. 71: 843-850   DOI   ScienceOn
31 Kephart, S. R. 1990. Starch gel electrophoresis of plant isozymes: A comparative analysis of techniques. Am. J. Bot. 77: 693-712   DOI   ScienceOn