Genetic Diversity and Spatial Structure of Symplocarpus renifolius on Mt. Cheonma, Korea

  • Jeong, Ji-Hee (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Park, Yu-Jin (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Zin-Suh (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • Published : 2007.12.30

Abstract

Genetic variation and structure of 9 subpopulations of Symplocarpus renifolius Schott ex Tzvelev on Mt. Cheonma, in Korea, were determined via starch-gel electrophoresis. The genetic diversity at 10 loci for 8 isozymes ($P_{99}=66%,\;A=2.26,\;H_o=0.212,\;H_e=0.230$) was found to be considerably higher than that seen in other long-lived perennial plants. On the whole, the genotype frequencies were in accordance with Hardy-Weinberg expectations. Approximately 5%($\theta=0.049$) of the total variability was among subpopulations. The high levels of observed genetic diversity in S. renifolius were attributed to a universal outcrossing system and other specific factors like differences in age classes and widely scattered individuals around the main distribution. Heterozygosity was highest at a mid-range of elevation($450m{\sim}600m$). The lowest heterozygosity at lower elevation was attributed to the possible origin of seeds transported by water from upstream regions during the monsoon season. Spatial structure in a subpopulation evidenced a strong autocorrelation between closer individuals within $3{\sim}4m$ of distance. This was assumed to be attributable to the restricted seed dispersal characteristics of S. renifolius. In accordance with the findings generated in this study, some implications regarding the conservation of S. renifolius at the Mt. Cheonma were also presented.

Keywords

References

  1. Camazine, S. and K. J. Niklas. 1984. Aerobiology of Symplocarpus foetidus: Interactions between the spathe and spadix. Am. J. Bot. 71: 843-850 https://doi.org/10.2307/2443475
  2. Chung, M. Y., J. D. Nason and M. G. Chung. 2004. Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae). Am. J. Bot. 91: 52-57 https://doi.org/10.3732/ajb.91.1.52
  3. Chung, M.Y., Y. B. Suh, J. Lopez-Pujol, J. D. Nason and M. G. Chung. 2005. Clonal and fine-scale genetic structure in populations of a restricted Korean endemic, Hosta jonesii (Liliaceae) and the implications for conservation. Ann. Bot. 96: 279-288 https://doi.org/10.1093/aob/mci176
  4. Clark, P. J. and F. C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35: 445-453 https://doi.org/10.2307/1931034
  5. Conkle, M. T., P. D. Hodgskiss, L. B. Nunnally and S. C. Hunter. 1982. Starch gel electrophoresis of conifer seeds: a laboratory manual. General Technical Report PSW-64. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California
  6. Degen, B. 2000. SGS: Spatial Genetic Software. Computer program and user's manual version 1.0c. (see http://kourou.cira d.fr/genetique/sofrware.html)
  7. Degen, B., R. Petit and A. Kremer. 2001. SGS - Spatial Genetic Software: a computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. J. Hered. 92: 447-448 https://doi.org/10.1093/jhered/92.5.447
  8. Gao, L., C. Wei, Q. Yang, D. Hong and S. Ge. 2001. IntraPopulation genetic structure of Oryza rufipogon Griff. in Yunnan, China. J. Plant Res. 114: 107-113 https://doi.org/10.1007/PL00013973
  9. Hamrick, J.L. and M. J. W. Godt. 1989. Allozyme diversity in plant species. In: Brown, A. D. H., M. T. Clegg, A. L. Kahler and B. S. Weir (eds.) Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland, MA pp. 43-63
  10. Hamrick, J.L. and J. D. Nason. 1996. Consequences of dispersal in plants. In: Rhodes, O. E. J., R. K. Chesser and M. H. Smith (eds.) Population Dynamics in Ecological Space and Time. The Univ of Chicago Press, Chicago, IL pp. 203-236
  11. Hong, S. P. and J. C. Son. 2003. Pollination of Symplocarpus renifolius Schott ex Miquel (Araceae) in Korea. Kor. J. Plant Tax. 33: 165-179 (in Korean) https://doi.org/10.11110/kjpt.2003.33.2.165
  12. Ito, K. T. Ito, Y. Onda and M. Uemura, 2004. Temperaturetriggered periodical thermogenic oscillations in Skunk cabbage (Symplocarpusjoetidus). Plant Cell Physiol. 45: 257-264 https://doi.org/10.1093/pcp/pch038
  13. Jeong, J. H. 2003. Genetic variation of Symplocarpus renifolius in Mt. Cheonma. MS thesis. Korea University, Seoul Korea (in Korean)
  14. Kang, H. J. and B. M. Min. 1994. Population dynamics of Symplocarpus renifolius 2. Seed production. Korean J. Ecol. 17: 463-469 (in Korean)
  15. Kephart, S. R. 1990. Starch gel electrophoresis of plant isozymes: A comparative analysis of techniques. Am. J. Bot. 77: 693-712 https://doi.org/10.2307/2444817
  16. Lewis, P. O. and D. Zaykin. 1999. Genetic data analysis: Computer program for the analysis of allelic data, version 1.0 (d12) (see http://lewis.eeb.uconn.edu/lewishome/)
  17. Li, H. 1979. Symplocarpus. In: Wu, C.Y. and H. Li (eds.) Flora Republicae Popularis Sinicae. Vol. 13, No.2, Science Press, Beijing pp. 11
  18. Nakagawa, M. 2004. Genetic diversity of fragmented populations of Polygala reinii (Pilugalaceae), a perennial herb endemic to Japan. J. Plant Res. 117: 355-361 https://doi.org/10.1007/s10265-004-0167-1
  19. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590
  20. Susan, K., D. N. John, M. H. Frances and J. T. Stephen. 2001. Spatial population genetic structure in Trillium grandiflorum: The role of dispersal, mating, history, and selection. Evolution 55: 1560-1568 https://doi.org/10.1111/j.0014-3820.2001.tb00675.x
  21. Swofford, D.L. and R. B. Selander. 1989. BIOSYS-l: A computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7. Illinois Natural History Survey, IL
  22. Uemura, S., K. Ohkawara, G. Kudo, N. Wada and S. Higashi. 1993. Heat-production and cross-pollination of the Asian Skunk Cabbage Symplocarpus renifolius (Araceae). Am. J. Bot. 80: 635-640 https://doi.org/10.2307/2445433
  23. Wada, N. and S. Uemura 1994. Seed dispersal and predation by small rodents on the herbaceous understory plant Symplocarpus renifolius. Am. Midl. Natl. 132: 320-327 https://doi.org/10.2307/2426588
  24. Wada, N. and S. Uemura, 2000. Size-dependent flowering behavior and heat production of a sequential hermaphrodite, Symplocarpus renifolius (Araceae). Am. J. Bot. 87: 1489-1494 https://doi.org/10.2307/2656875
  25. Weeden, N.F. and J. F. Wendel. 1989. Genetics of plant isozymes. In: Soltis, D.E. and P. S. Soltis (eds.) Isozymes in Plant Biology. Dioscorides, Portland, OR pp. 46-72
  26. Weir, B. S. 1996. Genetic data analysis II. Sinauer, Sunderland, MA
  27. Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370 https://doi.org/10.2307/2408641
  28. Wen, J., R. K. Jansen and K. Kilgore. 1996. Evolution of the astern Asian and North American disjunct genus Symplocarpus (Araceae): Insight from chloroplast DNA restriction site data. Biochem. Syst. Ecol. 24: 736-747
  29. Williams, C. F. 1994. Genetic consequences of seed dispersal in three sympatric forest herbs. II. Microspatial genetic structure within populations. Evolution 48: 1959-1972 https://doi.org/10.2307/2410520
  30. Wilson, K. A. 1960. The genera of Arales in the southeastern United State. J. Amold. Arbor. 41: 47-72
  31. Wright, S. 1951. The genetical structure of populations. Ann. Eugenic 15: 323-354