• Title/Summary/Keyword: standard roughness profiles

Search Result 9, Processing Time 0.023 seconds

New Joint Roughness Coefficient and Shear Strength Criterion Based on Experimental Verification of Standard Roughness Profile (표준 거칠기 단면의 실험적 검증에 의한 새로운 거칠기 계수 및 전단강도 기준식)

  • Jang, Hyun-Sic;Sim, Min-Yong;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.561-577
    • /
    • 2021
  • The ten standard roughness profiles suggested by Barton and Choubey (1977) were extended to make three-dimensional (3D) joint models whose profiles were identical at any cross section. Replicas of joint models were produced using plaster of Paris, and direct shear tests were performed to verify the joint roughness coefficients (JRC) of the standard roughness profiles. Joint shear strengths measured by direct shear tests were compared with those predicted by the shear failure criterion suggested by Barton (1973) based on JRC, joint compressive strength (JCS), and joint basic friction angle (𝜙b). Shear strengths measured from joints of the first and fourth standard roughness profiles were close to predicted values; however, shear strengths measured from the other joint models were lower than predicted, the differences increasing as the roughness of joints increased. Back calculated values for JRC, JCS, and from the results of the direct shear tests show measured shear strengths were lower than predicted shear strengths because of the JRC values. New JRC were back calculated from the measured shear strength and named JRCm. Values of JRCm were lower than the JRC for the standard roughness profiles but show a strong linear relationship to JRC. Corrected JRCm values for the standard roughness profiles are provided and revised relationships between JRCm and JRC, and new shear strength criterion are suggested.

Geostatistical algorithm for evaluation of primary and secondary roughness

  • Nasab, Hojat;Karimi-Nasab, Saeed;Jalalifar, Hossein
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.359-370
    • /
    • 2021
  • Joint roughness is combination of primary and secondary roughness. Ordinarily primary roughness is a geostatistical part of a joint surface that has a periodic nature but secondary roughness or unevenness is a statistical part of that which have a random nature. Using roughness generating algorithms is a useful method for evaluation of joint roughness. In this paper after determining geostatistical parameters of the joint profile, were presented two roughness generating algorithms using Mount-Carlo method for evaluation of primary (GJRGAP) and secondary (GJRGAS) roughness. These based on geostatistical parameters (range and sill) and statistical parameters (standard deviation of asperities height, SDH, and standard deviation of asperities angle, SDA) for generation two-dimensional joint roughness profiles. In this study different geostatistical regions were defined depending on the range and SDH. As SDH increases, the height of the generated asperities increases and asperities become sharper and at a specific range (a specific curve) relation between SDH and SDA is linear. As the range in GJRGAP becomes larger (the base of the asperities) the shape of asperities becomes flatter. The results illustrate that joint profiles have larger SDA with increase of SDH and decrease of range. Consequencely increase of SDA leads to joint roughness parameters such Z2, Z3 and RP increases. The results showed that secondary roughness or unevenness has a great influence on roughness values. In general, it can be concluded that the shape and size of asperities are appropriate parameters to approach the field scale from the laboratory scale.

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.

Estimation of Joint Roughness Coefficient(JRC) using Modified Divider Method (수정 분할자법을 이용한 절리 거칠기 계수(JRC)의 정량화)

  • Jang Hyun-Shic;Jang Bo-An;Kim Yul
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.269-280
    • /
    • 2005
  • We assigned points on surface of standard roughness profile by 0.1mm along the length and measured coordinates of points. Then, the lengths of profile were measured with different scales using modified divider method. The fractal dimensions and intercepts of slopes were determined by plotting the length vs scale in log-log scale. The fractal dimensions as well as intercepts of slopes show well correlation with joint roughness coefficients(JRC). However, multiplication of the kactal dimension by intercept show better correlation with IRC and we derived a new equation to estimate JRC from fractal dimension and intercept. The crossover length in which we can determine the correct fractal dimension was between 0.3-3.2mm. We measured joint roughness of 26 natural joints and calculated JRC using the equation suggested by Tse and Cruden(1979) and new equation derived by us. IRC values calculated by both equations are almost the same, indicating new equation is effective in measuring IRC.

Water Surface Profile Computations at Irrigation Channel Networks (관개용수로에서의 수면곡선 계산)

  • 김현준;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.114-120
    • /
    • 1988
  • A water surface profile computation model using a standard step procedure was developed for gradually varied flow at an irrigation channel network. Flow characteristics ab Banweol district near Suweon were field monitored during irrigation periol of 1987. The model was applied to the main system at the district and the simulation results were compared to the field data. The results are sumrnarized as follows ; 1. The simulated water surface profiles from the model were in good agreement with the measured water surface profiles at different flow rates. 2. The model applicability for defining a stage-discharge relationship at a channel reach was demonstrated with reasonable accuracy when water stage and friction factor were given. 3. The roughness coefficient was found to be a major factor sigrificantly affecting computed water surface profile among a few physical input parameters for the model.

  • PDF

A clindrical post dipping method to fabricate PDMS microlens array (CPD 방식을 통한 PDMS lens의 제작)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Ha, Joon-Geun;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1495_1496
    • /
    • 2009
  • A cylindrical post dipping (CPD) method to fabricate the PDMS microlens arrays is presented in this paper. The proposed CPD method is based on the surface tension effect. 2 mm gap and gapless lenses with 2 mm diameter are fabricated and characterized geometically. Both profiles of the fabricated microlens are well-fitted with ideal lens profile. The surface roughness average of the fabricated lens is measured to be 1.953 nm. The focal length of 2mm gap lenses and the gapless lenses is calculated to be 17.00 mm with 0.65 mm standard deviation and 29.88 mm with 2.58 mm standard deviation, respectively. The proposed CPD method can be applied to wafer level lens fabrication due to its simplicity and versatility.

  • PDF

Bora wind characteristics for engineering applications

  • Lepri, Petra;Vecenaj, Zeljko;Kozmar, Hrvoje;Grisogono, Branko
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.579-611
    • /
    • 2017
  • Bora is a strong, usually dry temporally and spatially transient wind that is common at the eastern Adriatic Coast and many other dynamically similar regions around the world. One of the Bora main characteristics is its gustiness, when wind velocities can reach up to five times the mean velocity. Bora often creates significant problems to traffic, structures and human life in general. In this study, Bora velocity and near-ground turbulence are studied using the results of three-level high-frequency Bora field measurements carried out on a meteorological tower near the city of Split, Croatia. These measurements are analyzed for a period from April 2010 until June 2011. This rather long period allows for making quite robust and reliable conclusions. The focus is on mean Bora velocity, turbulence intensity, Reynolds shear stress and turbulence length scale profiles, as well as on Bora velocity power spectra and thermal stratification. The results are compared with commonly used empirical laws and recommendations provided in the ESDU 85020 wind engineering standard to question its applicability to Bora. The obtained results report some interesting findings. In particular, the empirical power- and logarithmic laws proved to fit mean Bora velocity profiles well. With decreasing Bora velocity there is an increase in the power-law exponent and aerodynamic surface roughness length, and simultaneously a decrease in friction velocity. This indicates an urban-like velocity profile for smaller wind velocities and a rural-like velocity profile for larger wind velocities. Bora proved to be near-neutral thermally stratified. Turbulence intensity and lateral component of turbulence length scales agree well with ESDU 85020 for this particular terrain type. Longitudinal and vertical turbulence length scales, Reynolds shear stress and velocity power spectra differ considerably from ESDU 85020. This may have significant implications on calculations of Bora wind loads on structures.

Analysis of Shear Properties from the Numerical Shear Test on Rock Joints with PFC2D (PFC2D를 이용한 암반 절리의 수치전단시험으로부터 전단 특성 분석)

  • Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.357-366
    • /
    • 2021
  • Shear behavior dependent on the shape and roughness of rock joints can greatly influence the stability of the ground and rock structures. The efficient design of rock structures requires understanding of the shear behavior due to joints and accurate calculation of the shear strength. This work reports numerical shear tests using PFC2D on No. 1 (JCR-1), with smooth joints, and No. 7 (JRC-7) and No. 9 (JRC-9), with relatively rough joints, for the 10 shapes of standard joint profiles proposed by Barton and Choubey (1977). The aim was to investigate the shear behavior of rock joints with respect to their roughness. The results show the maximum shear stress to be about 3.2 to 5.0 times greater in the rougher JRC-7 and JRC-9 joints than in smoother JRC-1. The maximum shear displacement was approximately 4.1 to 5.8 times greater at the first normal stress than at the second. The rougher joints showed friction angles of the rock joints that were approximately 1.8 to 3.9 times greater than that in the smooth joint. Overall, increasing the rock joint roughness increased the maximum shear stress and friction angle.

A Study on Velocity Distribution Characteristics for Each Location and Effectiveness of Straight Duct Length in a Square-sectional 180° Bended Duct (정사각형 단면을 갖는 180° 곡관에서 위치별 속도분포특성 및 직관거리의 유효성에 관한 연구)

  • Chen, Jing-Jing;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.618-627
    • /
    • 2016
  • This study numerically analyzes the characteristics of the velocity distribution for each location of a square-sectional $180^{\circ}$ bent duct using a Reynolds Stress Turbulent model. The flow parameters were varied, including the working fluids, inlet velocity, surface roughness, radius of curvature, and hydraulic diameter. The boundary conditions for computational fluid dynamics analysis were inlet temperatures of air and water of 288 K and 293 K, inlet air velocity of 3-15 m/s, inner surface roughness of 0-0.001 mm, radius of curvature of 2.5-4.5 D, and hydraulic diameter of 70-100 mm. The working fluid characteristics were highly affected by changes in the viscous force. The maximum velocity profiles in the bent duct were indicated when the $90^{\circ}$ section was in the region of X/D=0.8 and the $180^{\circ}$ section was in the region of Y/D=0.8. Lower surface roughness and higher radius of curvature resulted in a higher rate of velocity change. Also, an efficient measuring location downstream of the bent duct is suggested since the flow deviations were the most stable when the straight duct length was in the region of L/D=30. The minimum deviations at the same velocity conditions according to the hydraulic diameter were mostly indicated in the range of L/D=15-30 based on the standard deviation characteristics.