• Title/Summary/Keyword: standard flow

Search Result 2,039, Processing Time 0.023 seconds

A Study on the Standard Flow Chart for Civil Engineering (토목공학을 위한 표준 이수체계도에 관한 연구)

  • Choi, Se-Hyu;Park, Sung-Sik
    • Journal of Engineering Education Research
    • /
    • v.15 no.1
    • /
    • pp.3-8
    • /
    • 2012
  • This study present the standard flow chart for civil engineering considering Korean education environment. The flow charts of USA's 20 universities and Korea's 6 universities are investigated. The standard flow chart are proposed based on the standard curriculum of civil engineering and flow charts of USA and Korea though analyzing of prerequisite of each subject. The proposed standard flow chart is expected when used to improve korean universities curriculum.

A Study on the Suggestions for Standard Flow Conditions considering the Variation of Stream Flow and Water Quality for the Management of Total Maximum Daily Loads (하천 유량.수질변화 특성을 고려한 수질오염총량관리 기준유량 조건에 관한 연구)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.426-435
    • /
    • 2012
  • The variation of stream flow is the one of the most important factors which influence on that of water quality in the unit watershed. The target water quality goal is established and permissible load is allotted in the base of the standard flow condition along with its water quality for the management of Total Maximum Daily Loads (TMDLs). A standard flow selected could cause problems in the load allotment if it was not properly arranged. This study reviewed the acquisition of water quality data, the self-variation and the retainability in water quality on the specific flow conditions. This study also proposed the median and the adjusted average flow condition out of general flow conditions as alternative standard flow conditions. It is considered that the alternatives can make the water quality data easily acquired and the water quality representativeness more enhanced on the standard flow conditions.

Comparative Study on Evaluating Standard Flow in Partially Gauged and Ungauged Watershed (부분계측 및 미계측 유역에서 기준유량 산정 방법 비교 연구)

  • Kim, Gyeonghoon;Kim, Jeongmin;Jeong, Hyunki;Im, Taehyo;Kim, Seongmin;Kim, Yongseok;Seo, Mijin
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.481-496
    • /
    • 2019
  • The Ministry of Environment has measured streamflow at eight-day intervals for the estimation of standard flow of the Total Maximum Daily Loads (TMDL) system. This study identified the availability of the partially measured the eight-day interval data for estimating standard flow and found the optimal extension techniques of standard flow. The study area was selected for the Nakbon-A watershed in the Nakdong River, and four streamflow record extension techniques of standard flow were considered: extension, percentile, drainagearea, and regional regression methods. The flow duration curve (FDC) using the eight-day interval streamflow data indicated very high Nash and Sutcliffe Efficiency (NSE) values above 90 % from FDC-II to FDC-VII compared to FDC-VIII, the standard FDC. This result demonstrates that FDC using daily data of three-six cumulative years could represent standard FDC fairly well. For the streamflow record extension techniques of standard flow, the percentile method was selected as the optimal alternative, showing the minimal difference from FDC-VIII. These results validate the availability of the eight-day interval streamflow data in the standard flow estimation and the application of extension techniques. It seems that these results could reduce the uncertainty of partially measured streamflow data for water quantity and quality management.

A New Set of Capillary Tube Selection Charts for R-22 in Consideration of the Roughness Effect (조도를 고려한 R-22용 모세관 선정 선도)

  • Kim, C.N.;Hwang, U.P.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.681-693
    • /
    • 1995
  • A new set of capillary tube selection charts for R-22 is proposed. The set of charts takes into account of the roughness effect on the mass flow rate. For this purpose, a set of numerical model is developed and a series of experiments is conducted to verify the numerical model. A numerical model is used to calculated the mass flow rate for several sets of tube diameter, length, inlet pressures and degree of subcooling. The outlet of the tube is controlled to be at critical condition. The experimental flow rate is compared with calculated values. The calculated values are consistently less than the experimental ones except for the flow rate range below 40kg/hr. The deviation is within 10---. Based on the nunmerical model and results of experiments, the set of capillary tube selection charts for R-22 is constructed. The set of charts consists of standard capillary tube chart(L=2030mm, d=1.63mm, ${\varepsilon}=2.5{\mu}m$), non -standard flow factor(${\phi}_1$) chart, and non-standard roughness factor(${\phi}_2$) chart. The mass flow rate, flow factor, and the roughness factor are defined respectively as; $\dot{m}={\phi}_1{\phi}_2\dot{m}_{standard}\\{\phi}_1=\frac{\dot{m}(L,\;d,\;\varepsilon_{standard})}{\dot{m}_{standard}(L_{standard},\;d_{standard},\;{\varepsilon}_{standard})}\\{\phi}_2=\frac{\dot{m}(L_{standard},\;d_{standard},\;{\varepsilon})}{\dot{m}_{standard}(L_{standard},\;d_{standard},\;{\varepsilon}_{standard})}$.

  • PDF

Study on the Calibration System of Flow Meters in Partly Filled Pipes (비만관 유량계 교정 시스템 구축에 관한 연구)

  • Yoo, Sung-Ho;Lee, Dong-Rak;Lee, Min-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.141-146
    • /
    • 2005
  • Flow meters in partly filled pipes are set up and run in Korea now days, but there are no standard calibration procedures for the flow meters in accordance with ISO/IEC 17025, the standard calibration procedure based on the standard calibration procedures for flow meter in closed conduits and the technical notes of flow meter's makers is developed. the measurement uncertainty of the calibration for the flow meter in partly filled pipes is evaluated.

  • PDF

Study on the Development of Standard Reference Materials for Safety Control of Construction Materials (건설재료의 안전적 제어를 위한 표준물질 (Standard Reference Materials) 도출)

  • Lee, Dong Kyu;Lee, Keon Woo;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.54-61
    • /
    • 2017
  • The purpose of this study is to develop standard reference materials for safety control of construction materials considering the required performance of standard materials including flow performance incorporating particles. The flow characteristics of concrete are very complicated depending on mixing proportions of constituent materials, admixtures, amount of mixing, type of mixer, time of mixing, temperature and so forth. Uncertainties and multidimensional properties of concrete have been evaluated through various studies but there are few researches for the development of standard reference material. In this study, based on the rheological concept, the flow performance of construction materials was evaluated to understand the properties of standard reference materials and was finally obtained representing materials which simulate the standard reference materials.

Intercomparison of Light Oil Flow Standard System for the Reliability of Measurement Accuracy (경질유 유량표준장치의 신뢰도 검증을 위한 측정정확도 비교)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.712-719
    • /
    • 2008
  • Light Oil Flow Standard System(LOFSS), as a national oil flow standard system, in Korea Research Institute of Standards and Science(KRISS) was developed for oil flowmeter calibration, and the expanded uncertainty of flow quantity determination was estimated within 0.04 %. In order to improve the reliability of the LOFSS measurement, a proficiency test was carried out in the flow range of 20 and $240\;m^3/h$ (Reynolds number $20,000{\sim}900,000$). A turbine flowmeter was used as a transfer package in round robin test. The water flow standard system of KRISS, the pipe prover of the national calibration and test organization and the master meter calibrator of the turbine flowmeter supplier, which used the different working fluid respectively, were compared with the turbine flowmeter measurement. The maximum difference of measurement was 0.15 % between the LOFSS and the pipe prover. The En numbers of the each system measurement were evaluated at the same Reynolds number. It was found that the En numbers were less than 1 in the comparison, which means the procedures of the uncertainty estimation of the each calibrators were reasonable and reliable.

A Study on the Development and the Uncertainty Analysis of Oil Flow Standard System (기름 유량표준장치의 개발 및 측정 불확도에 관한 연구)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1071-1080
    • /
    • 2003
  • A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.

Long Term Stability of Uncertainty Analysis of Light Oil Elow Standard System (장기 안정성을 고려한 경질유 유량표준장치 불확도 평가)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1130-1138
    • /
    • 2005
  • A national standard system for the petroleum field has been developed to calibrate and test the oil flow meters in Korea. The operating system and the uncertainty of the system were evaluated by the peer reviewers of foreign national metrology institutes in 2002. Since the characteristics of the system might be changed by time, the uncertainty of the system is reevaluated with the consideration of the long term stability of the system. It is found that the system has a relative expanded uncertainty of 0.048 $\%$ in the range of $15\~120\;m^3/h$. According to the uncertainty budget, the uncertainties of the fluid density and the final mass measurement, which are temperature dependent, contribute about $94\%$ of the total uncertainty in the oil flow standard system

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.