• Title/Summary/Keyword: stage prediction

Search Result 1,108, Processing Time 0.026 seconds

Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator (GM냉동기를 이용한 수소액화 시스템의 액화량 예측)

  • 박대종;장호명;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.349-358
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for various hydrogen liquefaction systems using GM(Gifford-McMahon) refrigerator. Since the present authors' previous experiments showed that the liquefaction rate was approximately 5.1mg/s in a direct contact with a commercial GM refrigerator, the purpose of this study is to predict how much the liquefaction rate can be increased in different configurations and with improved heat exchanger performance. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the single-stage GM precooled L-H(Linde-Hampson) system, the two-stage GM direct contact system, the two-stage GM precooled L-H system and the two-stage helium GM-JT (Joule-Thomson) system. The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, when the two-stage precooling is employed and the effectiveness of heat exchangers approaches to 99.0%. It is concluded that the liquefaction rate is limited mainly by the cooling capacity of the current GM refrigerators and a larger scale of hydrogen liquefaction is possible with a greater capacity of cryocooler at 60-70 K range.

  • PDF

Improvement in Efficiency and Operating Range of Centrifugal Blower Stage for Sewage Aeration Blower

  • Hiradate, Kiyotaka;Kanno, Toshio;Nishida, Hideo;Shinkawa, Yasushi;Joukou, Satoshi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.379-385
    • /
    • 2010
  • We developed a high-efficiency, wide-operating-range centrifugal blower stage to meet the demand for reduced total energy-consumption in sewage treatment plants. We improved the efficiency of the two-dimensional impeller using a shape optimization tool and one-dimensional performance prediction tool. A limit of the throat deceleration ratio was set to maintain the stall-margin of the impeller. The low solidity vaned diffuser and return channel were designed using a sensitivity analysis with orthogonal arrays and three-dimensional steady flow simulations. The low solidity diffuser was designed in order to improve the performance in the low-flow-rate region. The return channel was designed so that the total pressure loss in the return channel was minimized. Model tests of both the conventional and optimized blower stages were carried out, and the efficiency and operating range of both stages were compared. The optimized blower stage improved in stage efficiency by 3% and in operating range by 5% compared with the conventional blower stage.

Prediction of unmeasured mode shapes and structural damage detection using least squares support vector machine

  • Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.379-390
    • /
    • 2018
  • In this paper, a novel and effective damage diagnosis algorithm is proposed to detect and estimate damage using two stages least squares support vector machine (LS-SVM) and limited number of attached sensors on structures. In the first stage, LS-SVM1 is used to predict the unmeasured mode shapes data based on limited measured modal data and in the second stage, LS-SVM2 is used to predicting the damage location and severity using the complete modal data from the first-stage LS-SVM1. The presented methods are applied to a three story irregular frame and cantilever plate. To investigate the noise effects and modeling errors, two uncertainty levels have been considered. Moreover, the performance of the proposed methods has been verified through using experimental modal data of a mass-stiffness system. The obtained damage identification results show the suitable performance of the proposed damage identification method for structures in spite of different uncertainty levels.

Systematic Dynamic Modeling of an Integrated Single-stage Power Converter

  • Choi, Ki-Young;Lee, Kui-Jun;Kim, Yong-Wook;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2288-2296
    • /
    • 2015
  • This paper proposes a novel systematic modeling approach for an integrated single-stage power converter in order to predict its dynamic characteristics. The basic strategy of the proposed modeling is substituting the internal converters with an equivalent current source, and then deriving the dynamic equations under a standalone operation using the state-space averaging technique. The proposed approach provides an intuitive modeling solution and simplified mathematical process with accurate dynamic prediction. The simulation and experimental results by using an integrated boost-flyback converter prototype provide verification consistent with theoretical expectations.

Prediction of Development Process of the Spherical Flame Kernel (구형 화염핵 발달과정의 예측)

  • 한성빈;이성열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 1993
  • In a spark ignition engine, in order to make research on flame propagation, attentive concentration should be paid on initial combustion stage about the formation and development of flame. In addition, the initial stage of combustion governs overall combustion period in a spark ignition engine. With the increase of the size of flame kernel, it could reach initial flame stage easily, and the mixture could proceed to the combustion of stabilized state. Therefore, we must study the theoretical calculation of minimum flame kernel radius which effects on the formation and development of kernel. To calculate the minimum flame kernel radius, we must know the thermal conductivity, flame temperature, laminar burning velocity and etc. The thermal conductivity is derived from the molecular kinetic theory, the flame temperature from the chemical reaction equations and the laminar burning velocity from the D.K.Kuehl's formula. In order to estimate the correctness of the theoretically calculated minimum flame kernel radius, the researcheres compared it with the RMaly's experimental values.

  • PDF

An optimization of synchronous pipeline design for IP-based H.264 decoder design (IP기반 H.264 디코더 설계를 위한 동기화 파이프라인 최적화)

  • Ko, Byung-Soo;Kong, Jin-Hyeung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.407-408
    • /
    • 2008
  • This paper presents a synchronous pipeline design for IP-based H.264 decoding system. The first optimization for pipelining aims at efficiently resolving the data dependency due to motion compensation/intra prediction feedback data flow in H.264 decoder. The second one would enhance the efficiency of execution per each pipelining stage to explore the optimized latency and stage number. Thus, the 3 stage pipeline of CAVLD&ITQ|MC/IP&Rec.|DF is obtained to yield the best throughput and implementation. In experiments, it is found that the synchronous pipelined H.264 decoding system, based on existing IPs, could deal with Full HD video at 125.34MHz, in real time.

  • PDF

Design of A two-stage Compressor Supported by Air-lubricated Multi-leaf Foil Journal Bearings (공기윤활 다엽포일 제어널 베어링으로 지지된 이단 압축기의 설계)

  • 김태호;이용복;김창호;이남수;김한길
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.936-941
    • /
    • 2001
  • This paper deals with the design of oil-tree motor-driven two-stage centrifugal compressor supported by air-lubricated multi-leaf foil bearings. The design of this compressor is performed, based upon prediction of critical speeds, load capacity, and stability. It is demonstrated in this paper that multi-leaf foil bearings can be adopted to satisfactorily support this centrifugal compressor.

  • PDF

Prediction of Noise & Vibration Effect of Agricultural Tractor Transmission at Design Stage

  • Kim, Jung-Hun;Kang, Young-Sun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.354-358
    • /
    • 1996
  • At design stage of the TRXI agricultural tractor transmission (New product of TongYang Moolsan Co., Ltd), the noise and vibration of the transmission were analyzed theoretically for the optimal design of the transmission . For this analysis, the finite element model was developed using a commercial computer software, ANSYS. The noise and vibration of the TRXI transmission housing were predicted by the modal analysis. Natural frequency of the TRXI transmission housing was ranged from 12.53Hz(1st mode ) to 30.05Hz(5th mode). The fifth mode took place at the bearing metal in the area of rear transmission housing and was very close to the gear mesh frequency (30.5Hz) of low rang gear at the low creep shifting . Based on the results , the bearing metal of the range shift housing was reenforced with the rib at design stage.

  • PDF

Development of a Program for Prediction and Visualization of Welding Deformations (용접변형 예측 및 가시화 프로그램 개발)

  • 서승일;노재규;이정수
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.113-119
    • /
    • 2002
  • To prevent problems caused by welding deformation, preparation in the design stage is necessary. Countermeasures in the design stage is also the most cost-effective method. In this study, to give designers information on the welding deformation, a system to visualize the welding deformation is developed. The model to visualize the deformation is the stiffened plate common in steel structures. To increase computational efficiency, theoretical solutions to calculate the deformation of plate and stiffener are used instead of numerical analysis. Also, to secure accuracy, experiments to estimate bending moment causing welding deformations are performed. A computer program written with Visual C++ is developed for interactive data input, calculation of welding deformation and display of deformed shape. Designers can change the design in the early stage after checking the deformed shape by this system.

Chaotic Dynamics in Tobacco's Addiction Model

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.322-331
    • /
    • 2014
  • Chaotic dynamics is an active area of research in biology, physics, sociology, psychology, physiology, and engineering. This interest in chaos is also expanding to the social scientific fields such as politics, economics, and argument of prediction of societal events. In this paper, we propose a dynamic model for addiction of tobacco. A proposed dynamical model originates from the dynamics of tobacco use, recovery, and relapse. In order to make an addiction model of tobacco, we try to modify and rescale the existing tobacco and Lorenz models. Using these models, we can derive a new tobacco addiction model. Finally, we obtain periodic motion, quasi-periodic motion, quasi-chaotic motion, and chaotic motion from the addiction model of tobacco that we established. We say that periodic motion and quasi-periodic motion are related to the pre-addiction or recovery stage, respectively. Quasi-chaotic and chaotic motion are related to the addiction stage and relapse stage, respectively.