• Title/Summary/Keyword: stacked conductor

Search Result 36, Processing Time 0.025 seconds

Normal Zone Propagation Properties of Ag Sheathed Bi-2223 Tape for HTS Cable and Cylindrical Stacked Conductor (HTS 케이블용 은시스 Bi-2223 테이프 및 원통형 적층 도체의 상전도 영역전파 특성)

  • 이병성;김영석;장현만;백승명;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.448-451
    • /
    • 2000
  • Normal zone propagation(NZP) characteristics were investigated on Ag sheathed Bi-2223 tape and cylindrical stacked conductor. Normal zone propagation(N2P) experiments with tape were conducted with refrigerator in temperature from 45 K to 77 K, 0 T. Cylindrical stacked conductor was molding with epoxy and experiments were conducted with adiabatic condition in $LN_2$. NZP velocities of tape with two condition of DC and AC were almost same at each temperature. NZP velocities of cylindrical stacked conductor were 1.9-2.4 cdsec in $LN_2$. Numerical analysis was carried out by a one-dimensional heat balance equation. As a result, simulated results of NZP velocity with Bi-2223 tape were similar to experimental results in DC.

  • PDF

Comparison Magnetization Losses of the multi-stacked YBCO Coated conductor and the BSCCO tapes (YBCO CC와 BSCCO Tape의 적층에 따른 자화손실 특성비교)

  • Lim Hyoungwoo;Lee Heejoon;Cha Gueesoo;Lee Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.13-16
    • /
    • 2005
  • Multi-stacked HTS tapes are needed to conduct large current in the power application. In this paper magnetization losses of the multi-stacked YBCO coated conductor and the BSCCO tape have been measured and compared. Magnetization losses of single tape, 2-stacked, 3-stacked and 4-stacked HTS tapes have been presented in this paper. Multi-stacked tapes have been fabricated using face-to-face type stacking method. Measurements of magnetization loss were performed under various stacked of external magnetic field to consider the anisotropic characteristics of HTS tapes. Test results show that loss density per unit volume decreased for both YBCO coated conductors and BSCCO tapes when the stacking number of tapes is increased. As the external magnetic field decreased, the ratio of decrement has risen because the full penetration magnetic field(Bp) of the multi-stacked tape is larger than that of the single tape.

The Magnetization Losses Characteristics of Multi-stacked and Variable Angle of External Magnet Field in YBCO CC and BSCCO tape (YBCO Coated Conducor와 BSCCO tape의 적층 및 외부자장의 각도에 따른 자화손실 특성)

  • Lim, Hyoung-Woo;Lee, Hee-Joon;Cha, Guee-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.34-38
    • /
    • 2005
  • Multi-stacked HTS tapes are needed to conduct large current in the power application. In this paper, magnetization losses of the multi-stacked YBCO coated conductor and the BSCCO tape have been measured and compared. Magnetization losses of single tape, 2-stacked, 3-stacked and 4-stacked HTS tapes have been presented in this paper. Multi-stacked tapes have been fabricated using face-to-face type stacking method. Measurements of magnetization loss were performed under various angle of external magnetic field to consider the anisotropic characteristics of HTS tapes. Test results show that loss density per unit volume decreased for both YBCO coated conductors and BSCCO tapes when the stacking number of tapes is increased. The magnetization losses of YBCO CC are larger than those of BSCCO tapes when the external magnetic field is increased.

Estimation of critical current density of a YBCO coated conductor from a measurement of magnetization loss (자화손실 측정값으로부터 추정한 YBCO CC의 임계전류밀도 평가)

  • Lee, S.;Park, S.H.;Kim, W.S.;Lee, J.K.;Choi, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.16-20
    • /
    • 2010
  • For large scale power applications of HTS conductor, it is getting more important to have a stacked HTS coated conductor with low loss and large current capacity. But it was not easy to measure some electric properties. Stabilizer free YBCO CC for striated/ stacked conductors is easily burned out during the measurement of the critical current density because it has no stabilizer and it is difficult to set-up the current lead and voltage taps because it has many pieces of YBCO CC in a conductor. Instead of direct measuring the critical current of a stacked HTS coated conductor, indirect estimation from measuring a magnetization loss of HTS coated conductor could be useful for practical estimation of the critical current. The magnetization loss of a superconductor is supposed to be affected by a full penetrating magnetic field, and it tends to show an inflection point at the full penetrating magnetic field when we generate the graph of magnetization loss vs. external magnetic field. The full penetrating magnetic field depends on the shape of the conductor and its critical current density, so we can estimate the effective critical current density from measuring the magnetization loss. In this paper, to prove the effectiveness of this indirect estimation of the critical current, we prepared several different kinds of YBCO CC(coated conductor) including a stacked conductor short samples and measured the magnetization losses and the critical currents of each sample by using linked pick up coils and direct voltage measurement with transport current respectively.

Magnetization Loss Characteristics at Arbitrary Directional Magnetic Field by Perpendicular Magnetization Loss in YBCO CC and BSCCO Stacked Conductors (YBCO CC 적층 및 BSCCO tape 적층선재에서 수직자화 손실 값을 이용한 임의 방향 자화손실 평가)

  • Lee, Ji-Kwang;Lim, Hyoung-Woo;Park, Myung-Jin;Cha, Guee-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.282-288
    • /
    • 2007
  • Magnetization loss of high temperature superconductoring BSCCO tape and YBCO coated conductor(YBCOCC) is most important issue in the development of superconducting power devices. In this paper, the measured results of magnetization losses under various angles of external magnetic field in BSCCO tape stacked conductors and YBCO CC stacked conductors are presented and compared with each other. Also, we present the compared results of magnetization losses measured at arbitrary reaction magnetic fields and analyzed with perpendicular magnetic field components of those. The results show that magnetization losses of YBCO CC single and stacked conductors agree well with the analyzed value by it's perpendicular magnetic field component, but BSCCO single and stacked conductors are not.

Magnetization Loss Characteristics of a Stacked Bi-2223 Conductor (적층 Bi-2223도체의 자화손실 특성)

  • Ryu, Gyeong-U;Han, Hyeong-Ju;Choe, Byeong-Ju;Na, Wan-Su;Ju, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.554-559
    • /
    • 2002
  • The at loss is an important issue in the design of superconducting cables and transformers. In these devices the Bi-2222 tapes are usually placed face-to-face. In such arrangements ac loss is influenced by adjacent tapes. The effect is investigated by measuring the magnetization loss in the stacked conductor, which consists of various numbers of Bi-2223 tapes. For the single tape the magnetization loss in perpendicular field is larger than that in parallel field by about a factor 10. This agrees well with the prediction for hysteresis loss in slab and strip models. For the stacked conductor in perpendicular field the magnetization loss at low fields is greatly decreased, compared to the loss of the single tape. However the loss at high fields is nearly unaffected. This behavior is well described by the slab model.

A study of estimation of transport current loss in vertically stacked HTS tapes (수직으로 적층된 초전도선재에서의 통전전류손실 예측에 관한 연구)

  • 최세용;나완수;김정호;주진호;조영호;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.250-253
    • /
    • 2003
  • In general, AC transport current loss of vertically stacked HTS tapes is larger than simple multiplication of single tape by stacked number. In this study we investigated the transport current and current distribution in face-to-face stacked conductor Numerical method has been developed for loss estimation and compared to the experimental works. Two results showed goof agreement each other The stacked conductor behaved like a single watching current distribution, From this point of view it is possible to suggest the other analogy to predict the transport current loss. All results were presented and checked the validities of the loss estimation.

  • PDF

A study of estimation of transport current loss in vertically stacked HTS tapes (수직으로 적층된 초전도선재에서의 통전전류손실 예측에 관한 연구)

  • 최세용;나완수;김정호;주진호;조영호;류경우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.14-17
    • /
    • 2003
  • In general, AC transport current loss of vertically stacked HTS tapes is larger than simple multiplication of single tape by stacked number. In this study we investigated the transport current and current distribution in face-to-face stacked conductor Numerical method has been developed for loss estimation and compared to the experimental works. Two results showed goof agreement each other. The stacked conductor behaved like a single watching current distribution, From this point of view, it is possible to suggest the other analogy to predict the transport current loss. All results were presented and checked the validities of the loss estimation.

  • PDF

Magnetization Loss Characteristic of a Stacked Bi-2223 Conductor (적층 Bi-2223도체의 자화손실 특성)

  • 한형주;류경우;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.46-49
    • /
    • 2002
  • The ac loss is an important issue in the design of superconducting cables and transformers. In these devices the Bi-2223 tapes are usually placed face-to-face In such arrangements ac loss is influenced by adjacent tapes. The effect is investigated by measuring the magnetization loss in the stacked conductor, which consists of various numbers of Bi-2223 tapes. For the stacked conductor in perpendicular field the magnetization loss at low fields is greatly decreased, compared to the loss of the single tape. The loss at high fields is unaffected. This behavior is well described by the slab model.

  • PDF

Effects of the insulation thickness on the magnetization loss of the multi-stacked YBCO coated conductor (절연거리 변화에 따른 적층된 YBCO 도체의 자화손실 변화)

  • Lim, Hyoung-Woo;Lee, Hee-Joon;Cha, Guee-Soo;Lee, Ji-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.95-97
    • /
    • 2005
  • Loss in the multi-stacked HTS wires are affected by a number of factor, such as, number of wires used in the stack, direction of external magnetic field and insulation thickness between the wire. This paper examines the effects of the insulation thickness on the magnetization loss of the multi-stacked YBCO coated conductor. Measurements of magnetization loss were performed using 4 different typo of multi-stacked wires and under various angle of external magnetic field. Test results show that loss density per unit volume increased for YBCO coated conductors when thickness of insulation increased. Loss density per unit volume decreased for YBCO coaled conductors when stacking number of tapes increased.

  • PDF