• Title/Summary/Keyword: stack effect problems

Search Result 32, Processing Time 0.029 seconds

Effect of the a floor plan of lobby floor for the Stack Effect in a High-rise Building (고층건물에서 로비층의 평면형태가 연돌효과에 미치는 영향)

  • Lee, June-Ho;Lim, Hyun-Woo;Seo, Jung-Min;Lee, Joong-Hoon;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.293-299
    • /
    • 2009
  • Many kinds of problems by stack effect occur in the high-rise buildings that have the simple plan on the first floor designed only by an external wall and an E/V shaft wall. Therefore, some buildings in the foreign countries has made the additional inside walls between lobby and E/V hall as a countermeasure on stack effect. An additional wall in the lobby is very useful countermeasure on stack problems because lobby is a main airflow path in the building. Decreasing effect on stack problems by an additional wall of lobby is reported in this study. An ordinary office building that has a simple lobby plan is simulated and measured in this study. The results show that characteristics on stack effect are changed by methods of applying additional walls and that alternations of countermeasures which building conditions like the kinds of problems and the problem's velocity etc. are considered are very important.

  • PDF

A Study on the Usefulness of the Countermeasures locally for the stack-effect in High-rise building (국소적 연돌효과 저감대책의 효용성에 관한 연구)

  • Seo, Jung-Min;Lim, Hyun-Woo;Lee, June-Ho;Lee, Joong-Hoon;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.300-305
    • /
    • 2009
  • High-rise buildings have some problems by stack effect. And, the solutions on the problems should be determined by considering an overall building. But, ordinarily, the countermeasures on the problems are applied to local part of the building. Local countermeasures often can be possible to arouse the secondary problems accompanied by the stack-effect. In this study, the usefulness of local countermeasures are evaluated in terms of both the reduction effect on problems and the possible secondary problems with simulations. The simulation results show that the application of countermeasures on an overall building is very important and that local countermeasures can be used optionally according to building's conditions.

  • PDF

E/V Shaft Cooling Method as a Stack Effect Countermeasure in Tall Buildings

  • Lee, Joonghoon;Song, Doosam;Jeong, Eunyoung
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • The higher the building height and the larger the temperature difference between the outdoor and indoor space, the more remarkable is the draft driven by the stack effect in high-rise buildings. Moreover, the stack effect can bring about the deterioration of habitability and the degradation of the performance of the indoor control system in high-rise buildings. In this study, as a measure to attenuate the stack effect, the E/V shaft cooling method was proposed and its performance was compared with the conventional stack effect control method for strengthening the air-tightness of the building using a numerical simulation method. The total decreasing ratios on the stack effect in a building were compared, and the probabilities of the secondary problems were analyzed. The results show that the E/V shaft cooling is very effective to decrease the stack effect in a high-rise building in terms of the reduction performance and application. Moreover, this method does not cause secondary problems, such as stack pressure transition to other walls, unlike the conventional stack effect mitigation method.

Case Study of Analysis of Problems and Minimizing Methods of Stack Effect in the Tall Complex Building (초고층 복합건물의 연돌현상 가중요인과 저감방안 사례연구)

  • Yu, Jung-Yeon;Cho, Dong-Woo;Yu, Ki-Hyung;Jeong, Cha-Su;Kang, So-Yeon;Song, Kyoo-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.363-368
    • /
    • 2006
  • The purpose of this case study is to analyze stack effect problems and to develop methods minimizing methods of stack effect in the tall complex building in cold climates. The main problems in the tall complex building occur in high-rise elevators. Such problems as elevator doors that do not close and exhaust airflows result in excessive pressure differences across elevator doors due to stack effect. Under the expected conditions causing these pressure differences, computer simulations with CONTAMW computer program and field measurements are performed in the tall complex building. The results are analyzed in architectural design aspects. With these analysis, the tall complex building design guidelines to minimize stack effect are proposed.

  • PDF

Evaluation of the Impacts of Stack Effect in High-Rise Buildings

  • Yang, In-Ho;Jo, Jae-Hun;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.91-103
    • /
    • 2003
  • The objective of this study is to analyze and evaluate the impact of the stack effect in high-rise buildings for solving the various problems resulting from it. For the evaluation of the impacts on the stack effect, computer program simulations based on the network model were performed for a typical high-rise office building. The results of the simulations show that the impact caused by the stack effect is mainly dependent on building envelope air-tightness and internal air flow resistance. Therefore the problems due to the stack effect may be solved to some extent by installing vestibules around entrance doors and doors serving elevators, and by zoning the elevators.

Simulation of the Stack Effect in High-Rise Builbings (고층건물에서의 연돌효과 시뮬레이션)

  • 양인호;여명석;조재훈;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.456-467
    • /
    • 2002
  • The objective of this study is to analyze and evaluate the impact of the stack effect in high-rise buildings for solving the various problems resulting from it. For the evaluation of the impact of the stack effect, computer program simulations based on the network model were performed for a typical high-rise office building. The results of the simulations show that the impact caused by the stack effect is mainly dependent on building envelope air-tightness and internal airflow resistance, so the problems due to the stack effect may be solved to some extent by installing vestibules around entrance doors and doors serving elevators, and by zoning the elevators.

Analysis of the Impacts of Stack Effect in High-rise Residential Buildings (초고층 주거용 건물에서의 연돌효과 영향 분석)

  • 양인호;조재훈;김광우;여명석
    • Journal of the Korean housing association
    • /
    • v.13 no.4
    • /
    • pp.61-66
    • /
    • 2002
  • The objectives of this study are to clarify the impacts of stack effect in high-rise residential buildings and to present technical methods to reduce stack effect. For the evaluation of stack effect, architectural design guidelines were used and computer program simulations based on network model were performed. The evaluation shows that problems due to stack effect may be reduced by appropriate architectural designs, such as increase in air-tightness of building envelop, and provision of vestibules around entrance and elevator hall doors.

A study on application of an E/V shaft cooling system to reduce the stack effect in high-rise building (연돌효과 저감을 위한 E/V샤프트 냉각장치의 적용에 대한 연구)

  • Lim, Hyun-Woo;Lee, June-Ho;Seo, Jung-Min;Lee, Jung-Hun;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.284-292
    • /
    • 2009
  • The stack-effect in high-rise buildings in winter causes many problems such as difficulties in opening or closing doors, infiltration, energy loss, noise and fire protection. Stack effect is influenced by temperature difference between the interior and exterior of building and the height of building. As an attenuation method for stack effect, the architectural methods are generally used. However, as though architectural methods were fully adopted, the problems are reported as ever in tall building. In this study, a new method to reduce stack effect will be suggested. As an active control method against the stack effect, E/V shaft natural cooling method is suggested. In this paper, the concept of E/V shaft natural cooling system and its reduction performance of stack effect by simulation and field measurement will be reported.

  • PDF

Solving the Problems Caused by Stack Effect in a High-rise Residential Building through Field Measurement and Simulation; Case Study (실측과 시뮬레이션을 통한 초고층 주거건물에서의 연돌효과 문제의 해결)

  • Koo Sung-Han;Jo Jae-Hun;Yeo Myoung-Souk;Kim Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.16 no.4
    • /
    • pp.73-80
    • /
    • 2005
  • A high-rise residential building experienced stack effect problems during the winter such as difficulties in opening residential entrance doors and whistling noise from elevator doors generated by airflow. Field measurements were carried out on the building and the problems were verified by the analysis of the measurement results from three points of view: the total stack pressure difference, pressure distribution on each floor, and the location of the neutral pressure level. Based on the analysis of the three key parameters, possible solutions were proposed, such as zoning vertical shafts, lessening the airflow from the entrance doors on basement floors and lobby floor by installing vestibules, improving the airtightness of exterior walls, and installing separation doors where the problems occur. Simulations of proposed solutions were conducted and the effects of reducing the pressure difference were evaluated. Stack effect problems in a high-rise residential building were verified through field measurements and could be mitigated by the solutions which were drawn from the analysis of the field measurements and the simulation results.

Evaluation of the Alternatives to Minimize Stack Effect Problems with Elevators in Tall Complex Buildings (초고층 복합건축물 엘리베이터에서의 연돌현상 저감방안 평가)

  • Yu, Jung-Yeon;Song, Kyoo-Dong;Cho, Dong-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • The purpose of this study is to evaluate the stack effect reduction alternatives in tall complex buildings in cold climates. The main problems in tall buildings occur in elevators. Such problems as elevator doors that do not close and exhaust airflows result in excessive pressure differences across elevator doors due to stack effect. Under the expected conditions causing these pressure differences, Field measurements are performed in three tall buildings. Each result of the measurements is analyzed in architectural design aspects. With these analysis, building design guidelines are proposed and analyzed by field measurements and computer simulations.