• Title/Summary/Keyword: stablizer

Search Result 3, Processing Time 0.017 seconds

GROUP ACTIONS IN A REGULAR RING

  • HAN, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.807-815
    • /
    • 2005
  • Let R be a ring with identity, X the set of all nonzero, nonunits of Rand G the group of all units of R. We will consider two group actions on X by G, the regular action and the conjugate action. In this paper, by investigating two group actions we can have some results as follows: First, if G is a finitely generated abelian group, then the orbit O(x) under the regular action on X by G is finite for all nilpotents x $\in$ X. Secondly, if F is a field in which 2 is a unit and F $\backslash\;\{0\}$ is a finitley generated abelian group, then F is finite. Finally, if G in a unit-regular ring R is a torsion group and 2 is a unit in R, then the conjugate action on X by G is trivial if and only if G is abelian if and only if R is commutative.

Improvement of Paraglider by Using Axiomatic Approach (공리적 접근법을 이용한 패러글라이더 성능 개선에 관한 연구)

  • 류상우;차성운;임웅섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.719-722
    • /
    • 2001
  • Paraglider has been used for a good air sports instrument by many people in the world though its short history. And manufacturers have improved it continuously. It has the great growth from the first model like parachute to the latest model that has the extreme speed, but we can improve it in more parts. In this paper, we will show the method which can improve its performance by using Axiomatic Approach.

  • PDF

GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2009
  • Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if E(R), the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)\;=\;o_r(x)$, $o_c(x)\;=\;\{x\}$ for all $x\;{\in}\;X$ where $o_{\ell}(x)$ (resp. $o_r(x)$, $o_c(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2\;=\;1\;+\;1\;{\in}\;G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.