• Title/Summary/Keyword: stable isotope analysis

Search Result 147, Processing Time 0.021 seconds

Measurement of the Rate of Protein Synthesis in Chickens by HPLC/MS

  • Seo, S.S.;Coon, C.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.3
    • /
    • pp.137-143
    • /
    • 2004
  • The fractional synthesis rates(FSR) were measured with 2l-wk and 3l-wk-old broiler breeder pullets and hens to investigate the effect of sexual maturity on FSR. The FSR were obtained from chicken tissues and blood samples using High-Performance Liquid Chromatography/Mass Spectrometry(HPLC/MS). A L-l-13C, 15N -leucine saline solution was infused by bolus injection as a tracer into broiler breeder pullets in the experiment. A rapid HPLC/MS method was developed to measure the isotopic enrichments of leucine in plasma, tissue samples, and eggs. The enrichments of stable isotope leucine incorporated into protein and the enrichments of the stable isotope free leucine were measured in liver, breast muscle and blood samples. Two sets of experiments were conducted. In experiment one, 2l-wk-old, sexually immature broiler breeder pullets were divided into groups of three and blood samples were collected at 20 or 30 min intervals until 1.5 h from initial injection. The pullets were sacrificed in groups of three at varying time intervals for 7 h after injection. The liver, breast muscle and blood samples were removed for analysis. The FSR were estimated to be 8.7l%/day for liver, 4.06%/day for breast muscle, and 5.08%/day for blood samples in 30 minutes after injection from the enrichment ratios. In experiment two, sexually matured 3l-wk-old broiler breeder hens were assorted into groups of three and blood samples were obtained at 20 or 30 min intervals for 2 h. The FSR for blood samples were determined. The broiler breeder hens were sacrificed in groups of three at various time intervals until 7 h after injection and liver, breast muscle and blood samples were removed for analysis. The FSR were calculated to be 5.96%/day for liver. Eggs were collected from five chickens daily for 10 days after large bolus injection. The average of total enrichments of stable isotope in egg albumin was increased by 0.064% at 4 days after injection and was back to normal in 7 days.

First GC-IRMS in Korea and Its Application Fields (국내 최초로 도입된 GC-IRMS와 응용분야 소개)

  • Shin, Woo-Jin;Lee, Kwang-Sik;Ko, Kyung-Seok
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.699-703
    • /
    • 2007
  • Compound-specific isotope analysis (CSIA) by isotope ratio mass spectrometer (IRMS) interfaced with gas chromatography (GC) is a state of the art analytical technique for stable isotopes in earth sciences, environmental sciences and forensics. Since early 1990s, GC-IRMS has been widely used to investigate the authenticity of food in forensic science and to trace the sources of organic contaminants in environmental science. In Korea, a GC-IRMS was firstly installed at the Korea Basic Science Institute (KBSI) in early 2005. In this study, we introduce the GC-IRMS of the KBSI shortly to stimulate various isotope-related researches of Korea, and report preliminary CSIA results for BTEX of different manufacturers.

Relative Quantification of Glycans by Metabolic Isotope Labeling with Isotope Glucose in Aspergillus niger

  • Choi, Soo-Hyun;Cho, Ye-Eun;Kim, Do-Hyun;Kim, Jin-il;Yun, Jihee;Jo, Jae-Yoon;Lim, Jae-Min
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.139-145
    • /
    • 2022
  • Protein glycosylation is a common post-translational modification by non-template-based biosynthesis. In fungal biotechnology, which has great applications in pharmaceuticals and industries, the importance of research on fungal glycoproteins and glycans is accelerating. In particular, the importance of quantitative analysis of fungal glycans is emerging in research on the production of filamentous fungal proteins by genetic modification. Reliable mass spectrometry-based techniques for quantitative glycomics have evolved into chemical, enzymatic, and metabolic stable isotope labeling methods. In this study, we intend to expand quantitative glycomics by metabolic isotope labeling of glycans in Aspergillus niger, a filamentous fungus model, by the MILPIG method. We demonstrate that incubation of filamentous fungi in a culture medium with carbon-13 labeled glucose (1-13C1) efficiently incorporates carbon-13 into N-linked glycans. In addition, for quantitative validation of this method, light and heavy glycans are mixed 1:1 to show the performance of quantitative analysis of various N-linked glycans simultaneously. We have successfully quantified fungal glycans by MILPIG and expect it to be widely applicable to glycan expression levels under various biological conditions in fungi.

A Review on the Application of Stable Water Vapor Isotope Data to the Water Cycle Interpretation (수증기안정동위원소의 물순환 해석에의 적용에 대한 고찰)

  • Lee, Jeonghoon;Han, Yeongcheol;Koh, Dong-Chan;Kim, Songyi;Na, Un-Sung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.34-40
    • /
    • 2015
  • Studies using stable water vapor isotopes have been recently conducted over the past two decades because of difficulties in analysis and sample collection in the past. Stable water vapor isotope data provide information of the moisture transport from ocean to continent, which are also used to validate an isotope enabled general circulation model for paleoclimate reconstructions. The isotopic compositions of groundwater and water vapor also provide a clue to how moisture moves from soil to atmosphere by evapotranspiration. International Atomic Energy Agency designates the stations over the world to observe the water vapor isotopes. To analyze the water vapor isotopes, a cryogenic sampling method has been used over the past two decades. Recently, two types of laser-based spectroscopy have been developed and remotely sensed data from satellites have the global coverage. In this review, measurements of isotopic compositions of water vapor will be introduced and some studies using the water vapor isotopes will also be introduced. Finally, we will suggest the future study in Korea.

Functional Metagenomics using Stable Isotope Probing: a Review

  • Vo, Nguyen Xuan Que;Kang, Ho-Jeong;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.231-237
    • /
    • 2007
  • The microbial eco-physiology has been the vital key of microbial ecological research. Unfortunately, available methods for direct identity of microorganisms and for the investigation of their activity in complicated community dynamics are limited. In this study, metagenomics was considered as a promising functional genomics tool for improving our understanding of microbial eco-physiology. Its potential applications and challenges were also reviewed. Because of tremendous diversity in microbial populations in environment, sequence analysis for whole metagenomic libraries from environmental samples seems to be unrealistic to most of environmental engineering researchers. When a target function is of interest, however, sequence analysis for whole metagenomic libraries would not be necessary. For this case, nucleic acids of active populations of interest can be selectively gained using another cutting-edge functional genomic tool, SIP (stable isotope probing) technique. If functional genomes isolated by SIP can be transferred into metagenomic library, sequence analysis for such selected functional genomes would be feasible because the reduced size of clone library may become adequate for sequencing analysis. Herein, integration of metagenomics with SIP was suggested as a novel functional genomics approach to study microbial eco-physiology in environment.

Source identification and Pathway analysis of Nitrate contamintation in "Cultural village", Jeungpyeong

  • 전성천;이강근;배광옥;정형재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.254-257
    • /
    • 2002
  • The purposes of this research are to identify the source and to analyze the pathway of nitrate contamination in "cultural village", Jeungpyeong. In order to examine recharge processes and flow pattern that closely related to the influent of nitrate contaminant, the flow field was simulated and the oxygen and hydrogen stable isotopes were analyzed. The nitrogen isotope was used to delineate contaminant sources. The shallow groundwater was mainly composed of precipitation, but leakage of domestic water and sewage contributed to the recharge. Nitrate contaminants were possibly from the leakage of sewage and animal waste. The nitrate concentration decreased due to dilution by low concentration water.ion water.

  • PDF

Geographic authentication of rice (Oryza sativa L.) collected from Asian countries using multi-elements, stable isotope ratio, and chemometric analyses

  • Lee, Kyoung-Jin;Park, Sung-Kyu;Lee, Ji-Hee;Son, Na-Young;Chung, Ill-Min;Kim, Seung-Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.263-263
    • /
    • 2017
  • Rice (Oryza sativa L.) is the world's third largest food crop after wheat and corn. Geographic authentication of rice has recently emerged as an important issue for enhancing human health via food safety and quality assurance. Here, we aimed to discriminate rice from six Asian countries through geographic authentication using combinations of elemental/isotopic composition analysis and chemometric techniques. Principal components analysis could distinguish samples cultivated from most countries, except for those cultivated in the Philippines and Japan. Furthermore, orthogonal projection to latent structure-discriminant analysis provided clear discrimination between rice cultivated in Korea and other countries. The major common variables responsible for differentiation in these models were ${\delta}^{34}S$, Mn, and Mg. Our findings contribute to understanding the variations in elemental and isotopic compositions in rice depending on geographic origins, and offer valuable insight into the control of fraudulent labeling regarding the geographic origins of rice traded among Asian countries.

  • PDF

The Estimation of Water Mass Mixing Ratio by Oxygen and Hydrogen Isotopes in the Southern Yellow Sea (황해 남부해역 해수에서 산소와 수소동위원소를 이용한 혼합비율 추정)

  • Kim, Kee-Hyun;Han, Jeong-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.357-362
    • /
    • 2000
  • Stable isotope ratios of oxygen and hydrogen were investigated in southern Yellow Sea in August 1997. Salinity showed good positive correlation with ${\delta}^{18}$O and ${\delta}$. The correlation between ${\delta}^{18}$O and ${\delta}$D is good. From the relationship between these parameters, we obtained two lines of conclusion: 1) seawater of study area I in summer is a mixture of Changjiang Water and modified Kuroshio Water; 2) stable isotopes are very useful tracers in studying property and behavior of water masses in the study area. In case when water masses can not be easily distinguished by T-S analysis, the stable isotopes seem to be powerful tools for this purpose.

  • PDF

Isotopic palaeodiet studies of human bone from Gyeongju Donggung Palace and Wolji pond site (pond No.3), Goryeo period (경주 동궁과 월지 3호 우물 출토 옛사람 뼈의 동위원소에 기록된 고려시대 식생활 양상)

  • Choe, Hyeon Goo;Shin, Ji Young
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.262-270
    • /
    • 2019
  • The stable isotopic composition of bone collagen plays an important role in reconstructing palaeodiet, nutrition, palaeoenvironment and their lifestyle. This is the first case in extracting palaeodietary information and breastfeeding pattern of Goryeo people using stable isotope analysis due to the lack of human remains in this period. We analyzed human bone collagen excavated from Gyeongju Donggung palace and Wolji pond No.3. The average values of δ13C and δ15N are as follows: (δ13C(‰) = -19.5 ± 0.9‰, δ15N(‰) = 11.1 ± 1.1 ‰, (n = 4). Stable carbon isotope values shows a mainly C3 based diet such as rice and barley. Stable nitrogen isotope results implies the protein sources attributed to terrestrial animals. There are various age groups in this study, which are adult, child and infant. Two individuals within early childhood age ranges (< 3 years) shows more elevated δ15N values than that of adult and this result implies the continuation of breastfeeding in this group until the age of 3. The results provide new insight into the breastfeeding pattern of Goryeo people, where breastfeeding and weaning practices have important implication for fertility, population dynamics, migration pattern and disease.

Advanced Analytical Techniques for Dissolved Organic Matter and Their Applications in Natural and Engineered Water Treatment Systems (최근 용존 유기물 분석 기법 및 자연환경과 수 처리 시스템 내 활용방안)

  • Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.31-42
    • /
    • 2022
  • Dissolved organic matter (DOM), which changes according to various factors, is ubiquitously present from natural environments to engineered treatment systems. Only limited information is available regarding the environmental functions of DOM after bulk analyses are only applied for characterization. In this paper, latest DOM analytical techniques are briefly introduced, which include fluorescence excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), size-exclusion chromatography with an organic carbon detector (SEC-OCD), carbon/nitrogen stable-isotope ratio, and Fourier transform-ion cyclotron resonance-mass spectroscopy (FT-ICR-MS). Recent examples of using advanced analyses to interpret the phenomena associated with DOM occurring in natural and engineered systems are presented here. Through EEM-PARAFAC, different components like protein-like, fulvic-like, and humic-like can be identified and tracked individually through the investigated systems. SEC-OCD allows researchers to quantify different size fractions. FT-ICR-MS provides thousands of molecular formulas present in bulk DOM samples. Lastly, carbon/nitrogen stable-isotope ratio offers reasonable tools for tracking the sources in environments. We also discuss the advantages and weakness of the above-mentioned characterizing tools. Specifically, they focus on single environmental factors (different sourced-DOM and interaction of sediment-pore water) or simple changes after individual treatment processes. Through collaboration with the advanced techniques later, they help the researchers to better understand environmental behaviors in aquatic systems and serve as essential tools for addressing various pending problems associated with DOM.