• Title/Summary/Keyword: stabilizing robust control

Search Result 69, Processing Time 0.026 seconds

A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed (선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구)

  • Kim, Young-Bok;Chea, Gyu-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

Variable Structure Control for a System with Mismatched Disturbances (입력과 매칭되지 않는 외란을 갖는 시스템에 대한 가변구조제어)

  • Choi, Yun-Jong;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.149-151
    • /
    • 2007
  • For several decades, VSC has gained much attention as one of the useful design tools for handling the practical system with uncertainties or disturbances. Generally, the disturbances in the matching condition can be perfectly rejected via VSC; however, these in the mismatching condition are known to be hardly rejected. There have been some trials on it, in which the resulting controls in fact belong to the class of robust control guaranteeing disturbance ${\gamma}$-attenuation. Therefore, in this paper, we propose a new Variable Structure Control (VSC) for a system with mismatched disturbances. The proposed controller is composed of linear and nonlinear parts; the former plays a role in stabilizing the system and the latter takes care of attenuating the disturbances. The main contribution is to introduce the concept of switching-zone, rather than switching-surface, that is designed through piece-wise Lyapunov functions. The resulting non-convex conditions are formulated with an iterative linear programming algorithm, which provides an excellent performance of almost rejecting the disturbances.

  • PDF

A Static Output Feedback Integral Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty (부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 정적 출력 궤환 적분 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.411-416
    • /
    • 2010
  • In this paper, an integral variable structure static output feedback controller with an integral-augmented sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty and matched input matrix uncertainty and disturbance satisfying some conditions. To effectively remove the reaching phase problems, an output dependent integral augmented sliding surface is proposed. Its equivalent control and ideal sliding mode dynamics are obtained. The previous some limitations is overcome in this systematic design. A stabilizing control with the closed loop exponential stability is designed for all unmatched system matrix uncertainties and proved together with the existence condition of the sliding mode on S=0. To show the usefulness of the algorithm, a design example and computer simulations are presented.

Controller design of variable structure system with an integral-augmented sliding surface for uncertain MIMO systems (적분 슬라이딩 면을 갖는 다변수 가변 구조 제어기 설계)

  • 이정훈;문건우;고종선;이대식;이주장;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1206-1212
    • /
    • 1993
  • In this paper, an variable structure system with an integral-augmented sliding surface is designed for the improved robust control of a uncertain multi-input multi-output(MIMO) system subject to the persistent disturbances. To effectively remove the reaching phase problems, the integral augmented sliding surface is defined, then for its design, the eigenstructure assignment technique is introduced. To guarantee the designed performance againts the persistent disturbance, the stabilizing control for multi-input system is also designed. The stability of the global system and performance robustness are investigated. The example will be given for showing the usefulness of algorithm.

  • PDF

A MIMO VSS with an Integral-Augmented Sliding Surface for Uncertain Multivariable Systems (불확실 다변수 시스템을 위한 적분 슬라이딩 면을 갖는 다입출력 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.950-960
    • /
    • 2010
  • In this paper, a multi-input multi-output(MIMO) integral variable structure system with an integral-augmented sliding surface is designed for the improved robust control of uncertain multivariable system under the matched persistent disturbance. To effectively remove the reaching phase problems, the integral augmented sliding surface is proposed. Then for its design, the eigenstructure assignment technique is introduced to. To guarantee the designed performance against the persistent disturbance, the stabilizing control for multi-input system is also designed to generate the sliding mode on the integral sliding surface. The stability of the global system together with the existence condition of the sliding mode are investigated and proved for the case of multi input system in the presence of uncertainty and disturbance. The reaching phase is completely removed in proposed MIMO VSS by satisfying the two requirements. An example and computer simulations will be present for showing the usefulness of algorithm.

A Dynamic Output Feedback Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty (부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 동적 출력 궤환 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2066-2072
    • /
    • 2010
  • In this paper, a variable structure dynamic output feedback controller with an transformed sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty, matched input matrix uncertainty, and disturbance satisfying some conditions. This paper is extended from the results of the static output feedback VSS in [9]. To effectively remove the reaching phase problems, an initial condition of the dynamic output is determined. The previous some limitations on the dynamic output feedback variable structure controller is overcome in this systematic design. A stabilizing control is designed to generate the sliding mode on the predetermined sliding surface S=0 and as a results the closed loop exponential stability is obtained and proved together with the existence condition of the sliding mode on S=0 for all unmatched system matrix uncertainties. To show the usefulness of the algorithm, a design example and computer simulations are presented.

A Study on the Control System Design of Sensorless Magnetic Levitation System (센서리스 자기 부상계의 제어계 설계에 관한 연구)

  • 김창화;김영복;양주호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.175-181
    • /
    • 1996
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are usually used to measure the gap. The use of sensor is troublesome such as sensor trouble, discord between the measurement point and the control point etc. This paper presents the design of robust stabilizing controller by H$_{\infty}$ control theory using the sensorless method proposed already by authors in the magnetic levitation system. And we investigated both the validity of the designed controller and the usefulness of the sensorless method proposed by authors of magnetic levitation system through results of actual experiment..

  • PDF

Robust Controller Design for Hydraulic Dipod Platform Based on 2-DOF H Controller Synthesis Framework (2자유도 H 제어기 종합 프레임웍에 기반한 유압식 Dipod 플랫폼의 강인제어기 설계)

  • Lee, Young-Hoon;Cho, Taik-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.805-814
    • /
    • 2013
  • A hydraulic dipod platform is used for tracking and stabilizing an antenna system to designate a satellite on a moving vehicle. The 2-DOF controller is very well suited to this controller design object because it is more flexible than the 1-DOF controller when the design object is not only the consideration between stabilizing and tracking but also the trade-off between performance and robustness. The 2-DOF controller synthesis based on the $H_{\infty}$ framework is divided into two design procedures. In this hydraulic dipod platform example, the single-step method shows better performance whereas the two-step method shows better robustness. The difference between these two synthesis results is compared using the structural property of the interconnection system matrix.

Uncertainty Observer using the Radial Basis Function Networks for Induction Motor Control

  • Huh, Sung-Hoe;Lee, Kyo-Beum;Ick Choy;Park, Gwi-Tae;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.

Robust Output Feedback Control Using a Servocompensator (서보보상기를 사용한 견실 출력귀환제어)

  • Lee, Ho-Jin;Lee, Keum-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.217-221
    • /
    • 2007
  • This paper deals with the robust nonlinear controller design using output feedback for a Chua circuit which is one of the well-known nonlinear models. First, an exosystem for reference signal tracking is defined, and error dynamic equations are derived from the differentiation of the output tracking error equation. The normal sliding surface is modified using the integral type servo compensator. The parameters in the equations of the modified sliding surface and servo compensator are determined by using the Hurwitz condition of stability. Especially the error signals can't be obtained directly from the output because all parameters are assumed unknown. So instead, a high gain observer is designed. From this estimated error signals, a stabilizing controller is designed. Simulation is done for demonstrating the effectiveness of the suggested algorithm.

  • PDF