• 제목/요약/키워드: stabilized combustion

검색결과 153건 처리시간 0.024초

산소부화 LPG 화염에서 혼합형 재연소 방법에 의한 NOx 저감 효과 (The Effect of Hybrid Reburning on NOx Reduction in Oxygen-Enriched LPG Flame)

  • 이창엽;백승욱
    • 한국연소학회지
    • /
    • 제12권4호
    • /
    • pp.14-21
    • /
    • 2007
  • In order to enhance combustion efficiency, oxygen-enriched combustion is used by increasing the oxygen ratio in the oxidizer. However, since the flame temperature increases, NOx formation in the furnace seriously increases for low oxygen enrichment ratio. In this case, reburning is a useful technology for reducing nitric oxide. In this research, experimental studies have been conducted to evaluate the hybrid effects of reburning/selective non-catalytic reaction (SNCR) and reburning/air staging on NOx formation and also to examine heat transfer characteristics in various oxygen-enriched LPG flames. Experiments were performed in flames stabilized by a co-flow swirl burner, which were mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and NOx generation were observed to increase by low level oxygen-enriched combustion, but due to its hybrid effects of reburning, SNCR and Air staging, NOx concentration in the exhaust have decreased considerably.

  • PDF

연료 과농 가스발생기의 연소 안정성 특성 연구 (Combustion Stability Characteristics of Fuel-Rich Gas Generators)

  • 서성현;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.119-122
    • /
    • 2007
  • 본 연구에서는 가스발생기의 연소 안정 특성을 파악하기 위해 실험적 방법을 적용하였다. 액체산소와 Jet A-1을 추진제로 사용하며 연료 과농 상태에서 작동하는 실험 가스발생기는 연소실 축 방향 공진 모드에 결합된 1200 Hz 대역의 고주파 연소불안정을 겪었다. 이 연소불안정의 발생 유무는 연소실 출구부의 음향 경계 조건과 화염의 열 발생 축 방향 위치에 매우 민감하게 반응하였다. 결과적으로 단일 분사기 노즐 크기 증가에 의한 화염의 축 방향 길이 증가는 연소안정성을 확연하게 향상시켰다.

  • PDF

중유 화염 연소로에서 LNG와 왕겨분말의 재연소 효과 비교 (The Comparison Study on Reburning Effects of LNG and Rice Husk in Heavy Oil Flamed Furnace)

  • 신명철;김세원;이창엽
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.25-32
    • /
    • 2009
  • In commercial combustion systems, heavy oil is one of main hydrocarbon fuel because of its economical efficiency. Regarding heavy oil combustion, due to increasing concerns over environmental pollutants such as carbon monoxide, unburned hydrocarbon and nitrogen oxides, development of low pollutant emission methods has become an imminent issue for practical application to numerous combustion devices. Also a great amount of effort has been tried to developed effective methods for practical using of biomass. It is also an important issue to reduce carbon tax. In this paper, an experimental study has been conducted to evaluate the effect of biomass reburning on NOx formation in a heavy oil flamed combustion furnace. Experiments were performed in flames stabilized by a multi-staged burner, which was mounted at the front of the furnace. Experimental tests were conducted using air-carried rice husk powder and LNG as the reburn fuel and heavy oil as the main fuel. The paper reports data on flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. NOx concentration in the exhaust has decreased considerably due to effect of reburning. The maximum NOx reduction rate was 62% when the rice husk was used by reburn fuel, however it was 59% when the LNG was used by reburn fuel. The result shows the positive possibility of biomass reburning system for optimal NOx reduction.

  • PDF

Laminar Lifted Methane Jet Flames in Co-flow Air

  • Sapkal, Narayan P.;Lee, Won June;Park, Jeong;Lee, Byeong Jun;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.83-86
    • /
    • 2015
  • The Laminar lifted methane jet flames diluted with helium and nitrogen in co-flow air have been investigated experimentally. The chemiluminescence intensities of $OH^{\ast}$ and $CH_2O^{\ast}$ radicals and the radius of curvature for tri-brachial flame were measured using an intensified charge coupled device (ICCD) camera, monochromator and digital video camera. The product of $OH^{\ast}$ and $CH_2O^{\ast}$ is used as a excellent proxy of heat release rate. These methane jet flames could be lifted in buoyancy and jet dominated regimes despite the Schmidt number less than unity. Lifted flames were stabilized due to buoyancy induced convection in buoyancy-dominated regime. It was confirmed that increased $OH^{\ast}$ and $CH_2O^{\ast}$ concentration caused an increase of edge flame speed via enhanced chemical reaction in buoyancy dominated regime. In jet momentum dominated regime lifted flames were observed even for nozzle exit velocities much higher than stoichiometric laminar flame speed. An increase in radius of curvature in addition to the increased $OH^{\ast}$ and $CH_2O^{\ast}$ concentration stabilizes such lifted flames.

  • PDF

메탄올 Bluff-Body 난류 화염내의 화염구조 및 $NO_{x}$ 생성 특성에 대한 수치적 연구 (Flamelet Modeling of Structures and $NO_{x}$ Formation Charateristics in Bluff-Body stabilized Methanol Flames)

  • 이준규;김성구;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.37-42
    • /
    • 2001
  • This paper computes the bluff-body stabilized jet and flame. This study numerically investigates the nonpremixed $C_{2}H_{4}-air$ jet for the nonreacting case and the nonpremixed $CH_{3}OH-air$ turbulent flames for the reacting case using the laminar flamelet model on modified KIVA2 code. And this study predicts $NO_{x}$ formation characteristics using Eulerian Particle Flamelet Model. In the present study, the turbulent combustion model is applied to analyze both nonreacting and reacting case. And both standard $k-{\varepsilon}$ model and modified $k-{\varepsilon}$ model are used in nonreacting case. Calculations are compared with experimental data in terms of velocity, mixture fraction, mixture fraction Root Mean Square and Temperature. The present model correctly predicts the essential features of flame structures and $NO_{x}$ formation characteristics in the bluff-body stabilized flames.

  • PDF

촉매 연소기에서 희박 예혼합기의 연소특성 (Combustion Characteristics of Lean Premixed Mixture in Catalytic Combustors)

  • 서용석;강성규;신현동
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1681-1690
    • /
    • 1998
  • The aim of this paper is to investigate combustion characteristics of lean premixed mixture stabilized by catalytic surface reaction. The catalytic combustor consisted of a catalyst bed and a thermal combustor. The catalyst bed was made of two stage, Pd catalyst in the first stage and Pt catalyst in the second stage. Auto ignition of lean mixture took place in the thermal combustor. Ignition temperature was about $810{\sim}820^{\circ}C$ at the fuel-air ratio of 1.5~3.0 % and the mixture velocity of 11~18m/sec. The position of flame front in the thermal combustor moved toward back as preheat temperature increased and fuel-air ratio decreased. The f1ame supported by surface reaction was stabilized without any flame stabilizers. NOx emissions from the catalytic combustor were below 2.0 ppm ($O_2$ 15 %) when gas temperature was limited below $1350^{\circ}C$. This result demonstrates that NOx emission from the catalytic combustor is much low comparing with conventional combustors.

메탄/순산소 예혼합 화염의 선회 특성 (Combustion Characteristics of Methane/Oxygen Gas in Pre-mixed Swirl Flame)

  • 최원석;김한석;조주형;김용모;안국영;우타관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.1979-1983
    • /
    • 2008
  • The effects of carbon dioxide addition to oxygen have been investigated with swirl-stabilized premixed methane flame in a laboratory-scale pre-mixed combustor. The methane fuel and oxydant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of carbon dioxide addition to the methane fuel and different swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensity of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of dilution gas in the reaction zone.

  • PDF

발전용 가스터빈 연소기의 천연가스 연소유동 해석 (Natural Gas Combustion Analysis in Power Generation Gas Turbine)

  • 김태호;최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.156-161
    • /
    • 2005
  • Two and Three dimensional numerical simulations have been carried out to understand the combustion characteristics of LNG-fueled gas turbine combustor for power generation. Focus of the study was given to the influences of different fuel composition of imported and domestic natural gases with the flow conditions selected from the gas turbine operation data. Reacting flow characteristics of the swirl stabilized natural gas combustor were understood from the comparison of the two-dimensional and three-dimensional results. The thermal influences of different natural gases were very small and the fuel composition and flow rate were considered to be tuned well.

  • PDF