• Title/Summary/Keyword: stability test

Search Result 4,735, Processing Time 0.039 seconds

Effects of Active Craniocervical Movement Training Using a Cognitive Game on Stroke Patients' Balance (인지적 게임을 이용한 능동적 두경부 움직임 훈련이 뇌졸중 환자의 균형에 미치는 영향)

  • Kim, Mi-sun;Choi, Woo-sung;Choi, Jong-Duk
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • Background: Compared with normal people, stroke patients have decreased voluntary craniocervical motion, which affects their balance. Objects: This study was conducted in order to examine the effects of active craniocervical movement training using a cognitive game on stroke patient's cervical movement control ability, balance, and functional mobility. Methods: The subject of this study were 29chronic stroke patients who were randomly allocated to either an experimental, cognitive game group (n = 15), or control group (n = 14), to which only neuro-developmental treatment (NDT) was applied. The intervention was conducted 5 times per week, 30 minutes per each time, for a total of 4 weeks. Active angle reproduction test, static stability test, limits of stability test, and Time up and Go (TUG) test, respectively, were carried out in order to evaluate cervical movement control ability, static balance, dynamic balance, and functional mobility. Paired t-test was used in order to compare differences between prior to after the intervention, along with an independent-test in order to compare prior to and after-intervention differences between the two groups. Results: After the craniocervical training with a body-driven cognitive game, the experimental group showed significant differences in flexion, extension, and lateral flexion on the affected side, and rotation on the affected side in the active angle reproduction test. The experimental group indicated significant differences in sway length both with eyes-open and with eyesclosed in the static stability test and in limits of stability test and TUG test. The control group to which NDT was applied had significant differences in flexion in the active angle reproduction test and in limits of stability test and TUG test. Conclusion: The above results mean that craniocervical training using a body-driven cognitive game positively influences stroke patient's cervical movement control ability and as a result their balance and functional mobility.

Stability Determination of the Various Cosmetic Formulations containing Glycolic Acid

  • Yeo, Hye-yeon;Kim, Jeong-hee
    • Journal of Fashion Business
    • /
    • v.22 no.3
    • /
    • pp.30-38
    • /
    • 2018
  • Glycolic acid(GA) is well known the most effective cosmetic ingredient on the epidermal remodeling, accelerated desquamation and inhibitory effect on melanin synthesis. The various cosmetic formulations containing GA have not been reported in terms of stability. This study was to investigate the stability of three formulations(gel, cream, and ointment). The stability of obtained formulations was tested chemical and physical characteristics including the composition stability, hot-cool cycling, the variation of pH and viscosity, and the observation of color and odor. The experimental results showed that the gel and cream containing 5% GA, both formulations have proper stability in the centrifugal test, hot-cool cycling test, viscosity, pH stability and the observation of color and odor. On the other hand, the 5% GA ointment did not have stability. We concluded that the formulations of gel and cream are more suitable than ointment to use GA ingredient for developing cosmetic in terms of stability.

Performance Evaluation of 100 % RAP Asphalt Mixtures using different types of Rapid-Setting Polymer-Modified Asphalt Emulsion for Spray Injection Application (속경성 바인더 유형에 따른 긴급보수용 스프레이 패칭 상온 재활용 아스팔트 혼합물(RAP)의 성능 평가)

  • Kim, Doo Yeol;Jeon, Ji Seong;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • PURPOSES : The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types. METHODS : Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test. RESULTS and CONCLUSIONS : Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.

Development of the Scale Track to Test Bogie Steering Performance (대차 조향 특성 시험을 위한 축소 트랙 개발)

  • Hur, Hyun-Moo;Park, Jun-Hyuk;You, Won-Hee;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of the railway bogie is classified into the stability and the steering performance. Testing for the bogie stability is conducted on the roller rig. But testing for the bogie steering performance on test facility is very difficult, so the testing for the vehicle curving performance is conducted on the real curve track. And it is desirable to test on the full scale test rig, but it caused many problems relating to test costs, test time. To overcome these problems, the small scale test rig is actively used in the field of bogie stability. Thus, in this paper, we have studied the scale track to test the bogie steering performance. For this, we designed the 1/5 scale test track equivalent to radius 200 curve and confirmed the validity of the testing for the bogie steering performance on the scale curve track through the testing using 1/5 scale bogie.

  • PDF

An Effect of Load and Genders on Postural Stability (취급자재의 무게와 성별이 균형 능력에 미치는 영향)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.101-106
    • /
    • 2010
  • The purposes of this paper are to investigate an effect of weight of material and gender on postural stability and to introduce formulas for those. There were five levels of weights 0, 9, 18, 27 and 36 kg, and two levels of genders were conducted. Eight male and five female subjects participated in this experiment, ten tests were performed for each level of weights to measure the postural stability by using the stability platform. The effect of the genders and the load on the postural stability were statistically analysed by the two way ANOVA test and the regression analysis. The ANOVA test showed that the effect of weights was statistically significant on postural stability to the both male and female subjects. And the postural stability of female subjects was better than that of male subjects. A linear regression formula for the balancing time and the load and a formula for the reduction rate postural stability and the relative load were introduced by the regression analysis.

SEISMIC STABILITY OF SATURATED REINFORCED SOIL WALLS

  • Kuwano, Jiro;Izawa, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.66-71
    • /
    • 2010
  • This paper studies the effect of saturation of backfill on the seismic stability of reinforced soil walls (RSWs) using centrifuge shaking table tests. For comparison, degradation of static stability and seismic stability of a RSW under unsaturated condition was also investigated. Test results showed that the RSW under saturated condition had enough static stability. However, seismic stability of saturated RSW significantly decreased as compared with that under unsaturated condition. The saturated model RSW did not collapse, though it showed large deformation. It maintained sufficient stability after shakings although a clear slip surface appeared in the backfill. Finally, it is discussed how to evaluate residual stability of RSWs damaged by earthquakes with test results and the simple evaluation method proposed by authors.

  • PDF

An Experimental Assessment of Combustion Stability of Coaxial Swirl Injectors and an Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소 안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • High-frequency combustion instabilities may occur during the development of feasible engine combustors. These instabilities can result in irreparable damages to the wall of combustors or the degradation of engine performance. So, it is essential to identify injectors that have high stability characteristics during the early stages of development. The objective of present study was to assess the stability of coaxial injectors and an impinging injector with different recess lengths in order to develop stable injectors optimally. Stability margin was evaluated based on the distance from operating condition to the unstable regions. A simulating combustion test method was used to analyze the stability of injectors. A small-scale combustion chamber was designed to simulate the first tangential acoustic mode of the actual combustor. Gaseous oxygen and a mixture of methane and propane were used as simulant propellants to satisfy their flow similarity to the actual propellants of a combustor in a liquid rocket combustor. The results indicated that injectors having small recess lengths showed relatively large combustion stability margins. For the injectors of large recess lengths, instability regions with large and super-large amplitude oscillations were observed. Thus, injector with shorter recess lengths had a higher stability than that of longer one due to the different mixing processes.

Performance Evaluation of High-RAP Asphalt Mixtures using Rapid-Setting Polymer-Modified Asphalt Emulsion (긴급보수용 개질 유화아스팔트 고비율 순환골재를 사용한 상온 아스팔트 혼합물의 성능 평가)

  • Kwon, Bong Ju;Heo, Jae Min;Han, Yong Jin;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 2015
  • PURPOSES : The purpose of this study was to evaluate the performance of rapid-setting polymer-modified asphalt mixtures with a high reclaimed asphalt pavement (RAP) content. METHODS: A literature review revealed that emulsified asphalt is actively used for cold-recycled pavement. First, two types of rapid-setting polymer-modified asphalt emulsion were prepared for application to high-RAP material with no virgin material content. The quick-setting polymer-modified asphalt mixtures using two types of rapid-setting polymer-modified asphalt emulsion were subjected to the following tests: 1) Marshall stability test, 2) water immersion stability test and 3) indirect tensile strength ratio test. RESULTS AND CONCLUSIONS : Additional re-calibration of the RAP was needed for laboratory verification because the results of analyzing RAP aggregates, which were collected from different job sites, did not deviate from the normal range. The Marshall stability of each type of binder under dry conditions was good. However, the Type B mixtures with bio-additives performed better in the water immersion stability test. Moreover, the overall results of the indirect tensile strength test of RAP mixtures with Type B emulsions exceeded 0.7. Further research, consisting of lab testing and on-site application, will be performed to verify the possibility of using RAP for minimizing the closing of roadways.

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.

Comparison of finite element analysis with wind tunnel test on stability of a container crane (컨테이너 크레인의 안정성에 대한 풍동실험과 유한요소해석의 비교)

  • Han, D.S.;Lee, S.W.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2008
  • This study is conducted to provide the proper analysis method to evaluate the stability of a container crane under wind load. Two analysis method, namely structure analysis and fluid-structure interaction, are adopted to evaluate the stability of a container crane in this investigation. To evaluate the effect of wind load on the stability of the crane, 50-ton class container crane widely used in container terminals is adopted for analysis model and 19-values are considered for wind direction as design parameter. We conduct structure analysis and fluid-structure interaction for a container crane with respect to the wind direction using ANSYS and CFX. Then we compare the uplift forces yielded from two analysis with it yielded from wind tunnel test. The results are as follows: 1) A correlation coefficient between structure analysis and wind tunnel test is lower than 0.65(as $0.29{\sim}0.57$), but between fluid-structure interaction and wind tunnel test is higher than 0.65(as $0.78{\sim}0.86$). 2) There is low correlation between structure analysis and wind tunnel test but very high correlation between fluid-structure interaction and wind tunnel test.

  • PDF