• Title/Summary/Keyword: stability of slope

Search Result 1,378, Processing Time 0.027 seconds

Investigation of slope reinforcement with drilled shafts in colluvium soils

  • Lia, An-Jui;Wang, Wei-Chien;Lin, Horn-Da
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.71-86
    • /
    • 2022
  • In Taiwan, an efficient approach for enhancing the stability of colluvium slopes is the drilled shaft method. For slopes with drilled shafts, the soil arching effect is one of the primary factors influencing slope stability and intertwines to the failure mechanism of the pile-soil system. In this study, the contribution of soil arching effect to slope stability is evaluated using the FEM software (Plaxis 3D) with the built-in strength reduction technique. The result indicates the depth of the failure surface is influenced by the S/D ratio (the distance to the diameter of piles), which can reflect the contribution of the soil arching effect to soil stability. When α (rock inclination angles)=β (slope angles) is considered and the S/D ratio=4, the failure surface of the slope is not significantly influenced by the piles. Overall, the soil arching effect is more significant on α=β, especially for the steep slopes. Additionally, the soil arching effect has been included in the proposed stability charts. The proposed charts were validated through two case studies, including that of the well-known Woo-Wan-Chai field in Taiwan. The differences in safety factor (FoS) values between the referenced literature and this study was approximately 4.9%.

Influence of load transfer on anchored slope stability (앵커보강사면에서 안정해석시 하중전이의 영향)

  • Kim, Sung-Kyu;Park, Jong-Sik;Kim, Nak-Kyung;Joo, Yong-Sun;Kim, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1351-1358
    • /
    • 2008
  • This paper presents how the load transfer mechanism of the ground anchor affects on the stability analysis of anchored slope. The finite element analysis and the conventional limit equilibrium analysis on the anchored slope were performed and compared. The limit equilibrium analysis of the anchored slope is quite open used in design practice due to the easiness of the analysis. However, the load transfer mechanism is not considered properly for the analysis. When the failure surface passes through the bonded length of an anchor, the anchor load is disregarded and the factor of safety for the anchored slope is smaller than it should be. In this study, the load transfer distribution was incorporated into the limit equilibrium stability analysis of the anchored slope and the results were compared with the results of finite element analysis.

  • PDF

Three-dimensional stability assessment of slopes with spatially varying undrained shear strength

  • Shi, Yunwei;Luo, Xianqi;Wang, Pingfan
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 2022
  • The variation of the undrained shear strength (cu) is an important consideration for assessing slope stability in engineering practice. Previous studies focused on the three-dimensional (3D) stability of slopes in normally consolidated clays generally assume the undrained shear strength increases linearly with depth but does not vary in the horizontal direction. To assess the 3D stability of slopes with spatially varying undrained shear strength, the kinematic approach of limit analysis was adopted to obtain the upper bound solution to the stability number based on a modified failure mechanism. Three types failure mechanism: the toe failure, face failure and below-toe failure were considered. A serious of charts was then presented to illustrate the effect of key parameters on the slope stability and failure geometry. It was found that the stability and failure geometry of slopes are significantly influenced by the gradient of cu in the depth direction. The influence of cu profile inclination on the slope stability was found to be pronounced when the increasing gradient of cu in the depth direction is large. Slopes with larger width-to-height ratio B/H are more sensitive to the variation of cu profile inclination.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Slope Stability Analysis for Compound slope (복합사면의 사면안정해석에 관한 연구)

  • Shin, Eun-Chul;Kim, Jin-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1279-1285
    • /
    • 2010
  • Our country has a tendency to build many structures by cutting mountainous areas due to geographical features. Among these construction done in our country, road construction take the first spot in rank. As the construction is done, fractured inclining plane is created inevitability because of the natural properties of mountainous areas. The stability of the fractured inclining planes and slope formed in the opening, which are developed at the time of construction, need to be evaluated. Also, reinforcement plans for these matters are necessary. This paper is to go through an examination on the fractured inclining surface that is developed at the time of construction, especially the composite inclining plane that consists of soil and rocks. Furthermore, evaluating the stability by performing an analysis on stereographic projection and limit equilibrium, based on the examination results. using the stability evaluations, applications were explored for reinforcement methods of construction that fits the geological characters of this inclining surface.

  • PDF

Effects of Forest Environmental Factors and Forest Road Structures on the Stability of Forest Road in Granite Areas (화강암지역의 산림환경 및 도로구조인자가 임도의 안정성에 미치는 영향)

  • Yim, Byung-Jun;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • To investigate the influence of forest road characteristics and site conditions on the stability of forest-road in granite area, four forest roads had been selected in Kyongbuk regions. The total of 13 road characteristic variables were evaluated by the discriminant analysis. The factors influencing the stability of forest road were bed rock, slope length, coverage, hardness, side-ditch erosion and road width. But aspect and soil texture were not significant for the stability in this area. In the correlation between forest environment and road structure, hardness and bed rock was highly significant in stability group, and coverage and side-ditch erosion was highly significant in instability group. 75 of 175 segments were instable whereas the others were stable. The centroids value by discriminant function in the stability and instability were estimated to 3.0585 and -1.9116, respectively. The stability criterion of forest road was discriminated from the centroids value of the each group. The main factors contributing the stability of forest road were significant in order of side-ditch erosion, coverage, soil texture, elevation, gradient, slope length and construction year. The prediction rate of discriminant function for stability evaluation of forest road was as high as 97.44%. In conclusion, the forest road structure factors such as length, coverage and slope gradient were controlled by construction techniques. If the factors like those should be considered in design, construction and forest road management, the stability of forest road may increase more. And also, it is necessary to take slope protection measures like small terraces and retaining walls for stability of cut slope.

  • PDF

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

Effects of Environmental Factors on the Stability and Vegetation Survival in Cutting Slope of Forest Roads (임도 절토 비탈면의 안정과 식생활착에 미치는 환경인자의 영향)

  • Jung, Won-Ok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.74-83
    • /
    • 2001
  • The purpose of this study was investigate to the influence of forest roads characteristics and environment factors on the soil erosion, stability and vegetation survival of cut slope in forest roads. The results obtained could be summarized as follows; 1. The correlated factors between slope erosion and variables in cut slope were altitude, convex, degree of slope, length of slope and soil depth. In the stepwise regression analysis, length of slope and soil hardness was a high significant and its regression equation was given by -89.6136 + 15.0667X14 + 16.6713X15($R^2$ = 0.6712). 2. The main factors influencing the stability of cut slope were significant in order of coverage, middle, convex, length of slope and north, and its discriminant equation was given by -1.019 + 0.064X22 - 0.808X8 - 0.622X24 + 0.742X11 - 0.172X14 - 0.545X6 ($R^2$ = 0.793). 3. The centroids value of discriminant function in the stability and unstability estimated to 1.244 and -1.348, respectively. The boundary value between two groups related to slope stability was -0.1038. The prediction rate of discriminant function for stability evaluation of was as high as 91.3%. 4. The dominant species of invasion vegetation on the cut slope consist with Carex humilis, Agropyron tsukushiense var. transiens, Calamagrostis arundinacea, Miscanthus sinensis var. purpurascens, and Ixeris dentata in survey area. The rate of vegetation invasion more increased by time passed. 5. The life form of invasion vegetation in cut slop showed to $H-D_1-R_{2,3}-e$ type of the hemicryptophyte of dormancy form, dissem inated widely by wind and water of dissminule type, moderate extent and narrowest extent of radicoid type, erect form of growth form. 6. The correlated factors between forest enviroment and coverage appeared north, passage years and middle position of slope at 5% level. The forest environment factors influencing the invasion plants in survey area were shown in order to altitude, passage years, rock(none), forest type(mixed) and stone amount. The regression equation was given by 17.5228 - 0.0911X3 + 3.6189X28 15.8493X22 19.8544X25 + 0.3558X26 ($R^2$ = 0.4026).

  • PDF

Slope Stability Analysis Considering Multi Failure Mode (다중파괴모드를 고려한 사면안정해석)

  • Kim, Hyun-Ki;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Conventional slope stability analysis is focused on calculating minimum factor of safety or maximum probability of failure. To minimize inherent uncertainty of soil properties and analytical model and to reflect various analytical models and its failure shape in slope stability analysis, slope stability analysis method considering simultaneous failure probability for multi failure mode was proposed. Linear programming recently introduced in system reliability analysis was used for calculation of simultaneous failure probability. System reliability analysis for various analytical models could be executed by this method. For application analysis for embankment, the results of this method shows that system stability of embankment calculate quantitatively.

Analyses of centrifuge modelling for artificially sensitive clay slopes

  • Park, Dong Soon
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.513-525
    • /
    • 2018
  • Slope stability of sensitive clayey soils is particularly important when subjected to strength loss and deformation. Except for progressive failure, for most sensitive and insensitive slopes, it is important to review the feasibility of conventional analysis methods based on peak strength since peak strength governs slope stability before yielding. In this study, as a part of efforts to understand the behavior of sensitive clay slopes, a total of 12 centrifuge tests were performed for artificially sensitive and insensitive clay slopes using San Francisco Bay Mud (PI = 50) and Yolo Loam (PI = 10). In terms of slope stability, the results were analyzed using the updated instability factor ($N_I$). $N_I$ using equivalent unit weight to cause a failure is in reasonable agreement shown in the Taylor's chart ($N_I$ ~ 5.5). In terms of dynamic deformation, it is shown that two-way sliding is a more accurate approach than conventional one-way sliding. Two-way sliding may relate to diffused shear surfaces. The outcome of this study is contributable to analyzing stability and deformation of steep sensitive clay slopes.