• Title/Summary/Keyword: stability of humanoid robots

Search Result 15, Processing Time 0.027 seconds

Development and Walking Pattern Generation of Biped Humanoid Robot (이족보행 휴머노이드 로봇의 개발과 보행패턴 생성)

  • Choi, Insoo;Lee, Seung Jeong;Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.173-178
    • /
    • 2017
  • As research on the practical use of robots has continued since the past, advancements into each field of society are being continuously tried in modern society, breaking bounds from the previous experimental environment. However, in order for robots to be applied to the real environment, the production cost, which is considered to be the biggest disadvantage of commercializing the existing robot platform, and the adaptability issue in working environments in terms of human standards must be considered. This paper proposes a robot of biped walking form, which conforms to the degree of freedom and the size of human beings. By replacing the encoder with a combined module of potentiometer, the high cost of production is reduced, and by adopting a modular design that is easy to replace parts, the maintenance cost of robots is reduced. Finally, stability was verified by applying a walking pattern to two dummy robots of different sizes and motor arrangements. In this paper, after developing the real biped walking robots, the performance and usability were verified through walking experiments and applying the walking pattern using the developed robots.

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.

A review on numerical models and controllers for biped locomotion over leveled and uneven terrains

  • Varma, Navaneeth;Jolly, K.G.;Suresh, K.S.
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • The evolution of bipedal robots was the foundation stone for development of Humanoid robots. The highly complex and non-linear dynamic of human walking made it very difficult for researchers to simulate the gait patterns under different conditions. Simple controllers were developed initially using basic mechanics like Linear Inverted Pendulum (LIP) model and later on advanced into complex control systems with dynamic stability with the help of high accuracy feedback systems and efficient real-time optimization algorithms. This paper illustrates a number of significant mathematical models and controllers developed so far in the field of bipeds and humanoids. The key facts and ideas are extracted and categorized in order to describe it in a comprehensible structure.

Study on redundancy resolution algorithm of humanoid

  • Yoo, Dong-Su;So, Byung-Rok;Choi, Jae-Yeon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2759-2764
    • /
    • 2003
  • Humans usually employ more joints than they actually need, and thus they can be categorized as a kinematically redundant system. Therefore, the behavior of the human body can be analyzed by several redundancy resolution algorithms. Different from typical industrial robots that are fixed to the ground, the COG/ZMP condition should be taken into account in the human body motion in order not to fall down. Thus a COG/ZMP stability index is employed as a measure of stability. Kinematic redundancy inherent in the human body can be exploited to satisfy the COG/ZMP condition. Simulation result shows that the COG/ZMP condition can be satisfied by exploiting the null space motion of the kinematically redundant human body model.

  • PDF

Safety Design analysis of a Robot Hand for Accurate Grasping Various Objects (정밀한 파지를 할 수 있는 로봇 손의 안정성 평가)

  • Lee, Min-Gyu;Lee, Yong-Hoon;Yim, Hong-Jae;Lee, Yong-Kwun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1203-1210
    • /
    • 2007
  • Robots have begun to perform various tasks on replacing the human in the daily life such as cleaning, entertainments etc. In order to accomplish the effective performance of intricate and precise tasks, robot hand must have special capabilities, such as decision making in given condition, autonomy in unknown situation and stable manipulation of object. In this study, we addresses the development of a 3-fingered humanoid robot hand system. We execute static analysis, vibration analysis and flexible dynamics to reserve stability at the design. Grasp motion of the finger uses a linear actuator and gears. Motion can be distinguished into four parts depending on the grasping thin paper, sphere, and column. In each motion, we compare the displacement of the case to be rigid with the case to be flexible. As a result, manufactured and feasibility of the robot hand is validated through preliminary experiments.

  • PDF