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1. INTRODUCTION 

Differently from any other type of robot, humanoid-biped 
robots are required to have mobility enough to move various 
types of terrain such as plain ground, rough terrain, slope, stair 
and bumpy ground. And due to complexity and uncertainty in 
the walking motion of the biped robots, the stability of robots 
has been one of the major issues for research of the biped 
robot. Since Vukobratovic [1] proposed the concept of ZMP in 
1970, ZMP has been employed as the criterion of the dynamic 
stability of the biped robot. To effectively adapt different 
walking environments and to secure the stability of the biped 
robot during walking motion, the biped robot had better be 
designed to have more degrees of freedom than required 
simply to follow the walking motion, by designing it as a 
redundant mechanism [6]. Recently, as an effort to resolve this 
kinematic redundancy of the biped robot, Kim, et al [2] 
proposed a dynamic control algorithm of a mobile robot 
system having kinematic redundancy by using a potential 
function that measures the stability degree of ZMP. 

In this paper, motion-planning algorithms for humanoid are 
investigated with consideration of both COG and ZMP 
conditions. A potential function that measures the stability for 
COG and ZMP are employed as the performance index. The 
kinematic redundancy inherent to the human body is exploited 
to satisfy the COG/ZMP conditions. The effectiveness of the 
proposed algorithms is verified through simulations.  

 
2. DEFINATION OF COG AND ZMP 

2.1 Definition of COG(Center of Gravity) 
COG is the point on the floor where the resultant moment 

occurred by the gravity is zero. COG criterion is used in static 
state or in very slow motion. When COG is in the support area, 
the robot is statically in the stable state. However, if COG is 
out of the support area, the robot will fall down unless 
appropriate external forces/torques are applied.  

 
Fig 1. Calculation of COG 

 

 
In Fig. 1, the mass of the i-th link is im and the position of 

the center of that link is ( , , )i i i iu x y z  with respect to the origin 
of the reference frame. Supposing that an arbitrary position 

( , ,0)p p pu x y  on the floor (x-y plane) be the point where the 
resultant moment occurred by the acceleration of gravity is 
zero, we can derive the following equation  

( ) 0,i i pi
m g u u× − =∑     (1) 

where  

[ ]Ti i i iu x y z= , 0
T

p p pu x y =   and [ ].0 0 Tg g=  
And (1) can be expressed as  

( ) 0i p ii
m g x x− =∑     (2) 

and 
( ) 0.i p ii

m g y y− =∑     (3) 
Now, COG point existing on the x-y plane is obtained as [8] 
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2.2 Definition of ZMP(Zero Moment Point) 

ZMP is the point at which the resultant moment occurred by 
gravity acceleration and inertial force is zero. ZMP is initially 
proposed by Vukobratovic [1] and it has been employed as the 
criterion of stability of walking robots. ZMP must be also 
placed in the support area like COG, in order for the robot to 
be kept stable. But the robot becomes unstable and fall down 
when ZMP goes out of the support area. 
                                                              

 

 

Fig. 2. Calculation of ZMP 
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In Fig. 2, ( , , )i i i iu x y z , 
iω  and iI  denotes the acceleration 

at the center of the i-th link, the angular acceleration at the 
center of the i-th link, and the inertial matrix, respectively. If 
the point ( , ,0)p p pu x y  on the x-y plane is the position where 
the summation of the moment is zero, we have [4][9]     

 ( ) ( ) ( ) 0i p i i i i i i ii i
u u m u g I Iω ω ω− × − + + × =∑ ∑ . (6) 

Substituting the components of the vectors into (6) gives the 
position of ZMP as 

( )( )

( )
i i i i i i i yi i

zmp
i i

m z g x m x z
x

m z g

τ+ − +
=

+
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( )( )

.
( )

i i i i i i i xi i
Zmp

i ii

m z g y m y z
y

m z g
τ+ − −
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+
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 (8) 

 
3. STABILITY INDEX AND REDUNDANCY 

RESOLUTION ALGORITHMS 
 
 
 
 
 
 
 
 
 
 

 Fig. 3.  Diagram of stable region 
 

Kim, et al [2] proposed a stability index given by 

 ( )
2 2

/ /1 1 ,COG ZMP MSP COG ZMP MSP

BSR BSR

x x y y
x y

θ
     − −  Φ = − −          

 (9) 

under the assumption boundary of stable region is a 
rectangular shape. / /( , )COG ZMP COG ZMPx y  is the position of COG 
or ZMP, and ( , )MSP MSPx y  denotes the position of the most 
stable position. BSRx  is defined as the distance from the most 
stable point to the boundary stable region in the x-direction, 
and BSRy  is considered as that in the y-direction. 

In this paper, separated stability indices for each direction, 
given by 

2
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x x
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and 
2
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will be employed. Each of these two indices represents 
stability margin along the x- and y-direction, respectively. 
Thus, two conditions given by (10) and (11) should be 
satisfied independently, but simultaneously. 

When 0Φ< , COG (or ZMP) is out of the boundary of 
stable region. That is, the distance between COG (or ZMP) 
and the most stable region is longer than distance between the 
boundary of the stable region and the most stable point. Since 
the distance between COG (or ZMP) and the most stable 
region is shorter than the distance between the boundary of 
stable region and the most stable point, COG (or ZMP) is in 
the boundary of stable region when 0 1< Φ < . If 1Φ = , the 
position of COG (or ZMP) is coincident with the most stable 

point. [2][3]. 
 

3.1 COG Stability Algorithm 
If the stability index is set to be 1, it represents the most 

stable case. When we differentiate the stability index equation 
with respect to time, two equations are derived as follows: 

( ) 0x xB θ θΦ = =                            (12) 
and 

( ) 0,y yB θ θΦ = =       (13) 
where 
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and 
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By combining (12) and (13), we have  
( ) 0B θ θΦ = = ,                           (16) 

where  
( ) ( ) ( )

T

x yB B Bθ θ θ =    and ( ) ( ) ( ) .
T

x yθ θ θ Φ = Φ Φ   
 

3.2  Augmented Jacobian Method for COG 
The kinematic relationship between the operational vector 

u and the joint velocity vector θ  can be written as 

.u Jθ=                  (17) 
Now, augmenting (16) and (17) into one matrix form yields  

.
0
u J

B
θ

   
=   

   
                              (18) 

The general solution of (18) is represented as 

,
0

J u J J
I

B B B
θ ε

+ +         = + −                
 (19) 

where the superscript ‘+’ implies a pseudo-inverse given by 
1

.
T TJ J J J

B B B B

−+          =                
  

If necessary, the joint angles can be obtained by numerical 
integration of the angular velocity vector. 

 
3.3 Null space Method for COG  

The general inverse solution of (16) can be given as 
([ ] ) ,J u I J Jθ ε+ += + −  (20) 

where ε  is an arbitrary vector.  
When (20) is substituted into (18), we obtain  

( )( ([ ] ) ) 0.B J u I J Jθ ε+ +Φ = + − =  (21) 
Then, from (21), ε  is obtained as 

( ([ ] )) .B I J J BJ uε + + += − −  (22) 
Finally, the general inverse solution is found by inserting 

(22) into (20) as 
([ ] )( ([ ] )) .J u I J J B I J J BJ uθ + + + + += − − −  (23) 

 
3.4 ZMP Stability Algorithms 
 Assume that the two stability indices given by  
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1 1ZMP MSP
y

BSR

y y
y

 −
Φ = − = 

 
 (25) 

are set to be 1 for the best stability. 
Then, we have    

0ZMP MSPx x− =            (26) 
and 

0.ZMP MSPy y− =            (27) 
  Now substituting (7) and (8) into equation (26) and (27) 
yields  
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0
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i i i i i i y ii i i
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i ii
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and 
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Rearranging (28) and (29) gives 
 i i i i i i i i MSP y xi i i i

m z x m x z m z x Cτ− − − =∑ ∑ ∑ ∑  (30) 
and 

 ,i i i i i i i MSP x yi i i i
m z y m y z m z y Cτ− − − =∑ ∑ ∑ ∑  (31) 

where  
( )x i i MSPi

C m x x g= −∑  
and 

( ) .y i i MSPi
C m y y g= −∑  

The inertial moment occurring at the center of the i-th link 
is expressed as [10] 

[ ] [ ] [ ] [ ] .T jk
i i i iI I I Pτ θ θ θ θ θ θ= + × = +         (32) 

In the meanwhile, the acceleration of the operational point 
given by  

[ ] [ ]Tu J Hθ θ θ= +                          (33) 
can be decomposed as three components  
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θ θ θ
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Substituting these components into (30) and (31) and 
reformulation (30), (31), and (32) in a matrix form yields 

[ ] [ ] ,T
m mC J Hθ θ θ= +   (34) 

where  

[ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
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3.5 Augmented Jacobian Method for ZMP 

(33) and (34) can be augmented as one matrix form given 
by 

m mTu J H
C J H

θ θ θ
     

= +     
     

. (35) 

Then, the angular acceleration vector is obtained as  

 [ ]m m m mTJ u H J J
I

J C H J J
θ θ θ ε

+ +            = − + −                       
 (36) 

by taking the pseudo-inverse of (35), where ε  is an arbitrary 
vector. 

 
3.6 . Null space Method for ZMP  

As an alternative method, we can employ the null space 
solution to improve the COG or ZMP stability. The general 
inverse solution of (33) is given by 

( )[ ] ([ ] ) .TJ u H I J Jθ θ θ ε+ += − + −  (37) 

 If we substitute (37) into (34), we can solve for ε  as below 

 ( )( )[ ( )] [ ] [ ] .T T
m m mJ I J J J J u H C Hε θ θ θ θ+ + += − − − − − (38) 

 We can solve the angular acceleration vectors by substituting 
(38) into (37). Integrating the acceleration vectors twice with 
respect to time yields the joint angles.  
 

4. SIMULATIONS 
Because the number of the input joint angles is more than 

the number of the output coordinates, the system given in Fig. 
4 can be called a kinematically redundant system. The system 
is to control y and z positions with three active inputs for this 
operation. Thus, one kinematic redundancy exists, which can 
be exploited to improve the ZMP stability.  
 
4.1 Simulation Parameters 

Simulation is performed to show the efficiency of COG and 
ZMP algorithms [8]. 

 
Fig. 4. Simulation model 

 

Table 1: Link Parameters and Simulation Condition 
 

 Link 1 Link 2 Link 3 
Initial angle 59.87  141.87  -133.84  

Length 0.4428m  0.4410m  0.5184m  
Mass 6.02kg  14.00kg  35.00kg  

Velocity profile ( ) 0.1sin( ) /v t t m s= −  

MSPy  (0,0)  

BSRy  0.1m±  
 

The lengths, masses, and initial angles of the links of the 
given model are listed in Table 1. The support length is given 
0.1m in both positive and negative y-directions. And the end 
effecter moves from left to right for 3 seconds with the 
sinusoidal velocity profile given in the table, while keeping 
z-position fixed(z=7). 
 
4.2 Simulation for COG Algorithm 

When we consider a planar model, xΦ  of COG stability 
indices is disappeared. So, COG stability index can be written 
as  
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( ) 1 1.COG MSP
y

BSR

y y
y

θ
 −

Φ = − = 
 

 (39) 

Differentiating (39) with respect to the time, we have 
( ) ( ) 0,y Bθ θ θΦ = =                           (40) 

where  
( )

2
1 2 3

2
( ) COG MSP COG COG COG

BSR

y y y y yB
y

θ
θ θ θ

 − −  ∂ ∂ ∂
=   

∂ ∂ ∂  
 

and 

( )1 2 3 .
T

θ θ θ θ=  

 
(a) Motion using the particular solution 

 
(b) Motion using COG algorithm 

 
(c) COG trajectory 

 
(d) Potential function trajectory 

 

Fig. 5. Simulation result 

Fig 5(a) illustrates the behavior of the manipulator in the 
case of not applying COG algorithm, using only the particular 
solution given by (20). Fig. 5(b) shows the movement of the 
manipulator when COG algorithm is applied by using the 
null-space solution. Fig. 5(c) shows that COG algorithm 
ensures the COG stability since the trajectory is inside the 
footprint. Also, Fig. 5(d) shows that the stability index is 
between 0 and 1, implying that COG algorithm is effective. 
 
4.3 Limitation of COG Algorithm 

When the velocity of manipulator is very slow, COG 
trajectory is almost coincident with ZMP. However, when the 
velocity increases, the moment caused by the acceleration 
applying to the z-direction increases gradually. Thus, the 
stability condition can’t be satisfied just by relying on COG. 

 
(a) 0.4sin(4 )y t=  

 
(b) 1.0sin(4 )y t=  

 

Fig. 6. COG and ZMP trajectories  
 

 For example, Fig. 6(a) and Fig. 6(b) shows the COG and 
ZMP trajectories when the amplitude of sine wave is 0.4 and 
1.0, respectively. When it is 0.4, the gap between COG and 
ZMP trajectory is small, but when it is 1.0, the shape of COG 
trajectory is significantly different from that of ZMP. Thus, as 
the velocity of manipulator becomes fairly fast, ZMP 
algorithm is more accurate and practical than COG algorithm. 
 
4.4 Simulation for ZMP Algorithm  

The simulation is performed for the same condition as Fig. 
4, except the mass of the third link reduced from 35kg to 12kg. 
And only the y-element of the ZMP condition is considered. 
The ZMP stability index that is equivalent to (31) is employed  

2

( ) 1 1.ZMP MSP
y

BSR

y y
y

θ
 −

Φ = − = 
 

 (41) 

Since the given system is operated in a planar domain, the 
inertial moment term is simplified as 

 1 2 3 2 3 3[ ] [ ] .xx xx xx xx xx xx
i iI I I I I I Iτ θ θ= = + + +  (42) 

Noting that the system has only one redundancy, the 
solution similar to (35) is obtained as  
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,m mTJ u H
J C H

θ θ θ
−       

= −      
      

 (43) 

where  

[ ] ,Tu y z=  [ ]1 2 3 ,Tθ θ θ θ=  
3

2; 1; 2;
1

1 2 3 2 3 3

( [ ] [ ] [ ] )
[ ]

[ ]

i i i i i i i ZMP i
im

xx xx xx xx xx xx

my J mz J my J
J

I I I I I I
=

 
− − = 

 + + + 

∑  

and 
3

3;; 2;; 3;;
1
( [ ] [ ] [ ]

[ ] .
[0]

i i i i i i i MSP i
im

my H mz H my H
H =

 
− − = 

  

∑  

 
(a) The result of not applying ZMP algorithm 

 
(b) The result of applying ZMP algorithm 

 
(c) ZMP trajectory 

 
(d) Potential function trajectory 

 
 

Fig. 7. Simulation results 

 In this simulation, we use 0.2sin( )y t=  as the velocity 
profile of the end position. Fig. 7(a) shows the case of not 
applying ZMP algorithm. Fig. 7(b) is the case of using ZMP 
algorithm. As shown in the figures, the upper ZMP trajectory 
follows the value, ‘0’, implying that the kinematic redundancy 
was properly exploited to improve the ZMP stability. However, 
we can observe the phenomenon that the manipulator 
movement becomes unstable at the last part of the trajectory. 
This is due to abrupt increase of joint acceleration due to 
wound up of null space dynamics. 

 
(a) The behavior of manipulator 

when the mass of the third link is 35kg 

 
(b) ZMP Trajectory 

 

Fig. 8. The movement of manipulator  
and its ZMP trajectory when mass of third link is 35kg  

 
To cope with this unstable movement, a null space damping 

[5] will be employed. That is, an additional ε  given by   

'

0 0
0 0
0 0

w
w

w
ε θ

 
 = − 
  

  (44) 

will be incorporated into (38), which tends to damp out the 
acceleration wound up by the uncontrollable null space 
dynamics [5]. When we substitute the additional ε  vector 
into (36), the ZMP trajectory becomes more stable as shown in 
Fig. 9.  

 
(a) When applying damping equation (w=16) 
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(b) ZMP trajectory 

 

Fig. 9. The movement of manipulator and its ZMP 
trajectory when null space damping is given. 

 

 
(a) The angular acceleration of joints without null 

space damping 

 
(b) The angular acceleration of joints  

with null space damping 
 

Fig. 10. The angular acceleration with  
and without null space damping 

 

Fig. 10 also shows the variation of the joint accelerations of 
the two cases. When the third mass becomes heavier, the 
angular acceleration of each links is increased and the motion 
of the links becomes unstable. The damping matrix plays an 
important role in reducing the acceleration of links and then 
decreasing the instability of link movement. 
 

5. CONCLUSION 
In this paper, we employed the stability indices associated 

with COG and ZMP. Those stability indices are transformed to 
an expanded kinematic equation, which is augmented to 
exploit the null space due to kinematic redundancy. 
Simulations illustrated the effect of COG and ZMP algorithms 
in a kinematically redundant system. It was shown that the 
COG and ZMP condition could be improved by employing the 
null space motion. As future works, we need to apply these 
algorithms to more general spatial models, and to study 

efficient way of using null space damping 
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